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Abstract

Compartmental models provide simple and efficient tools to analyze the relevant transmis-

sion processes during an outbreak, to produce short-term forecasts or transmission scenar-

ios, and to assess the impact of vaccination campaigns. However, their calibration is not

straightforward, since many factors contribute to the rapid change of the transmission

dynamics. For example, there might be changes in the individual awareness, the imposition

of non-pharmacological interventions and the emergence of new variants. As a conse-

quence, model parameters such as the transmission rate are doomed to vary in time, mak-

ing their assessment more challenging. Here, we propose to use Physics-Informed Neural

Networks (PINNs) to track the temporal changes in the model parameters and the state vari-

ables. PINNs recently gained attention in many engineering applications thanks to their abil-

ity to consider both the information from data (typically uncertain) and the governing

equations of the system. The ability of PINNs to identify unknown model parameters makes

them particularly suitable to solve ill-posed inverse problems, such as those arising in the

application of epidemiological models. Here, we develop a reduced-split approach for the

implementation of PINNs to estimate the temporal changes in the state variables and trans-

mission rate of an epidemic based on the SIR model equation and infectious data. The main

idea is to split the training first on the epidemiological data, and then on the residual of the

system equations. The proposed method is applied to five synthetic test cases and two real

scenarios reproducing the first months of the Italian COVID-19 pandemic. Our results show

that the split implementation of PINNs outperforms the joint approach in terms of accuracy

(up to one order of magnitude) and computational times (speed up of 20%). Finally, we illus-

trate that the proposed PINN-method can also be adopted to produced short-term forecasts

of the dynamics of an epidemic.

Author summary

During the recent COVID-19 pandemic, we all became familiar with the reproduction

number, a crucial quantity to determine if the number of infections is going to increase or

decrease. Understanding the past changes of this quantity is fundamental to produce
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realistic forecasts of the epidemic and to plan possible containment strategies. There are

several methods to infer the values of the reproduction number and, thus, the number of

new infections. Statistical methods are based on the analysis of the collected epidemiologi-

cal data. Instead, modeling approaches (such as the popular SIR model) attempt con-

structing a set of mathematical equations whose solution aims at approximating the

dynamics underlying the data.

In this paper, we explore the use of a recently developed technique called Physics-

Informed Neural Network, which tries to combine the two approaches and to simulta-

neously fit the data, infer the dynamics of the unknown parameters, and solve the model

equations.

The proposed PINN implementations are tested in different scenarios using both syn-

thetic and real-world data referred to the COVID-19 pandemic outbreak in Italy. The

promising results can pave the way for a wider use of PINNs in epidemiological

applications.

1 Introduction

Epidemiological models are nowadays fundamental to assist and guide policy makers in the

fight against the spreading of diseases. This has been evident during the recent COVID-19

pandemic, when epidemiologists and scientists all over the world devoted their research to

develop ad-hoc transmission models. Focusing, for example, on Italy, where the European out-

break started in February 2020, epidemiological models have been adopted to analyze different

aspects of the epidemic: to determine the urgency to impose regional restrictions [1]; to ana-

lyze the impact of the national lockdown [2, 3]; to explore the results of transmission scenarios

after the release of the restrictions [4]; to study the impact of the different variants and the vac-

cination campaign [5–7]; and to compute optimal strategies for the vaccine deployment in

order to minimize the number of cases or deaths [8, 9]. Most of these studies describe the

SARS-CoV-2 transmission using different variations of compartmental models. The basic SIR

model is at the core of those more-complex epidemiological models. It subdivides the popula-

tion of interest into compartments indicating the infectious status of each individual (i.e. sus-

ceptible, infected, or recovered individuals). The dynamic describes the mean contacts

between susceptible and infected individuals, and thus, the average rate at which susceptible

individuals transit to the infected compartment. The main model parameter is the rate of

transmission of the infection, β. This is strictly related to the well known basic reproduction

number, R0, representing the average number of secondary infections generated by one

infected individual in a totally susceptible population. The value of this quantity changes dur-

ing an outbreak due to the temporal variations in human behavior (caused, for example, by

changes in individual awareness or social distancing policies) and in the infectiousness of the

virus. The effective reproduction number, Rt, aims at describing the ongoing transmission in

a changing system.

Data-driven methods provide effective estimates of Rt based on the renewal equation [10–

12], i.e., a convolution on the reported cases having as kernel the serial interval (the time inter-

val between the symptom onset of an individual and its secondary infections). These data-

driven estimates do not explicitly provide a relationship between the changes in Rt and its pos-

sible causes, such as the implemented non-pharmaceutical interventions or the vaccination

campaigns. Compartmental models give a deeper understanding of the ongoing spreading of

the disease and, at the same time, allow the computation of Rt using the spectral radius of the
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next generation matrix [13–15]. However, they require the assessment and calibration of time-

dependent parameters.

Tracking the temporal variations in the model parameters is an essential but complex prob-

lem to follow and predict the spreading of a disease. Many studies tackle this problem using

Bayesian inference, i.e., searching for the posterior distribution of the unknown parameters

based on the available reported cases and the prior distribution. Among these approaches, we

recall the iterative particle filter [16], sequential data-assimilation schemes [17], or the use of

subsequent Markov chain Monte Carlo (MCMC) [4, 7]. Being based on random sampling,

these approaches might result in low quality results and large computational times, due to the

slow Monte Carlo convergence.

Here, we propose to adopt a deterministic approach based on Physics-Informed Neural

Networks (PINNs). The idea behind PINNs is to exploit the universal approximation property

of Neural Networks (NNs) [18, 19] to estimate the solution of differential equation [20]. In

practice, this is done by describing the state variables and, in case, the time-dependent parame-

ters using NNs. The parameters of the NNs are trained by seeking the minimum of a loss func-

tion based on both the misfit on the available data, and the residual of the differential

equations governing the problem at hand, i.e., the SIR model equations in our case. Thus, the

PINN functions fit the data and, at the same time, provide good approximations of the solu-

tions of the differential equations. The use of the epidemiological model equations is funda-

mental in PINNs and constitutes the main innovation with respect to simpler NNs or Deep

Neural Networks (DNNs), which are completely data-driven.

The application of PINNs to epidemiological models became particularly relevant during

the COVID-19 pandemic. Many studies used PINNs as an inverse-problem solver, to calibrate

the parameters of epidemiological compartmental models. However, the model parameters

has frequently been considered constant in time, e.g, [21, 22], or with particular periodic

dependencies on time [23]. Schiassi et al. [24] showed the computational efficacy of using

PINNs to estimate constant parameters of different basic compartmental models under

increasing levels of noise in the data. Long et al. [25] considered a more realistic scenario, and

used PINNs to accurately identify the time-varying transmission parameter in a SIRD model

of COVID-19 when assimilating the reported infected cases in three USA states. Feng et al.

[26] proposed a similar approach to predict the number of active cases and removed cases in

the US. Olumoyin et al. [27] used PINNs to track the changes in transmission rate and the

number of asymptomatic individuals for COVID-19. Ning et al. [28] and He et al. [29] pre-

sented applications of PINNs to COVID-19 outbreaks in Italy and China, respectively. Berta-

glia et al. [30] constrained PINNs to satisfy an asymptotic-preservation property to avoid poor

results caused by the multiscale nature of the residual terms in the loss function.

Building on top of these examples, our work aims to deeper explore the properties of

PINNs as an inverse solver for the estimation of time-dependent transmission rates or repro-

duction numbers in SIR models. Our analysis aims on further showing some benefits of using

PINNs that are not directly available with more traditional approaches such as: the simulta-

neous estimation of multiple parameters that change in time, the inference using jointly differ-

ent types of data, the possibility of providing a future projection for the evaluated parameters,

the possibility of training the model even if there are gaps or large errors or uncertainties on

the quality of the data.

In particular, we propose two modifications of the PINNs algorithm that grant faster con-

vergence and more stable results, thus providing a step forward in the use of PINNs in real epi-

demiological models.

The first modification splits the PINN implementation in two steps. The motivation for this

approach is that in the common PINN implementation for SIR-like models, the NNs
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representing the model state variables and, if present, the time-dependent parameters, are cali-

brated together through the minimization of the loss function on the data and the model resid-

ual. This inverse problem is particularly complex and many epochs might be required to

achieve convergence. Starting from the idea that the available epidemiological data, which are

typically the daily or weekly reported infections, is directly associated to a model state variable,

the split PINN approach is based on the following two steps: as first, construct the NN of the

state variable associated to the data, e.g., the infected compartment, by minimizing the loss

function based on the data; as second, calibrate the other NNs for the remaining state variables

and parameters based on the NN computed in the first step and the minimization of the resid-

uals of the governing equations. We will refer to the traditional PINN approach as joint
approach, in contrast to the described split approach. A graphical sketch of the two approaches

is shown in Fig 1.

The second proposed modification reduces the number of NNs considered in the PINN

approximation and, consequently, simplifies the structure of the loss function. This simplifica-

tion is possible because, in simple SIR-based models, the transmission parameter and the

infected compartment control the system dynamic. In fact, these functions allow to directly

evaluate the other state variables, which are then redundant in the formulation of the loss

function.

Our analysis compares the joint, split, and reduced approaches in a sequence of synthetic

test cases where we progressively challenge the structure of the transmission rate from con-

stant, to a sinusoidal-like dependence on time, to a real scenario, and increase the noise on the

synthetic reported data. The proposed test cases assume model parameters that are inspired by

the first months of the COVID-19 outbreak in Italy. As an example of application, the PINN

Fig 1. Diagram of the workflow of the joint (a) and split (b) PINN approaches.

https://doi.org/10.1371/journal.pcbi.1012387.g001
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strategies are adapted in order to fit the real epidemiological data reported in Italy. Due to the

large uncertainties that characterize the real data on the reported infections, in this last setting

we propose to include in the loss function also the data on the daily hospitalizations, which are

a more reliable representation of the number of individuals with severe symptoms. Finally, we

consider this scenario to explore the accuracy of the short-term forecasts produced by PINNs.

The paper is organized as follows. Section 2 presents the mathematical formulation of the

proposed methods. It starts with the equations of the SIR model (Section 2.1), then it describes

the joint and split implementations of PINNs (Section 2.2), and finishes with the modified

schemes for the reduced approach (Section 2.3) and the extension to the hospitalized data

(Section 2.4). The numerical results of the application of the proposed PINNs to seven test

cases are illustrated in Section 3. The method is tested and validated on synthetic cases (Section

3.1) and then applied in a real-world scenario (Section 3.2) for both parameter estimation and

forecast. Finally, Section 4 presents the discussion of the results and sums up the main

conclusions.

2 Methods

2.1 The basic SIR model

The well-known SIR model is largely adopted for the theoretical analysis of epidemics, and lies

at the core of several more complex epidemiological models for real applications. At a given

time t [T], the individuals in a population of dimension N [–] are subdivided into compart-

ments on the basis of their epidemiological status, in this case the susceptible (S), the infected

(I), and the recovered (R) individuals. The number of individuals in the three compartments

changes in time under the assumption that, in a well mixed population, any susceptible indi-

vidual can enter in contact with any infected individual, thus possibly becoming infected itself.

From a mathematical point of view, the strong form of the ordinary differential problem

governing these dynamics can be stated as follows. Let T ¼ ½t0; tf � � R
þ [ f0g be the time

domain of interest, with t0 and tf [T] the initial and final times of the simulation, respectively.

Given the continuous functions bðtÞ : T ! Rþ and dðtÞ : T ! Rþ, find SðtÞ : T ! ½0;N�,
IðtÞ : T ! ½0;N�, and RðtÞ : T ! ½0;N� such that:

_SðtÞ ¼ �
b

N
IðtÞSðtÞ

_IðtÞ ¼
b

N
IðtÞSðtÞ � dIðtÞ

_RðtÞ ¼ dIðtÞ

; 8 t 2 T ;

8
>>>>>><

>>>>>>:

ð1Þ

and satisfying the initial conditions:

Sðt0Þ ¼ N � I0

Iðt0Þ ¼ I0

Rðt0Þ ¼ 0

8
>>><

>>>:

ð2Þ

In Eqs (1) and (2) β [T−1] is the transmission rate controlling the average rate of the infec-

tion, δ [T−1] is the mean rate of removal of the infected individuals that become recovered.

Another relevant quantity used to set up the model is D = δ−1, i.e., the mean reproduction

period [T] representing the average time spent by an individual in compartment I. Initial con-

ditions for the spreading of a new disease assume that the population at the initial time is
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completely susceptible besides a small number I0 of infected individuals (typically 1, but not

necessarily).

The basic reproduction number R0 [-] associated to this model reads R0 ¼ bðt0Þ=dðt0Þ and

provides an estimate of the number of secondary infections generated by one infectious indi-

vidual in a susceptible population, i.e. at the beginning of the epidemic. The threshold R0 > 1

indicates the occurrence of an outbreak, while R0 < 1 indicates that the number of infected

individuals is rapidly decreasing. Note that, in a real population, the number of individuals in

each compartment is a discrete variable, whose dynamic can be described by stochastic

approaches, e.g., the Gillespie method or discrete Markov chains. Hence, the continuous deter-

ministic model in Eqs (1) and (2) is a valuable representation of the mean process in large

populations.

Standard numerical ODE solvers, such as Runge-Kutta-based methods, can provide an

accurate solution to the differential problem (1) and (2). For R0 > 1 and constant parameters,

the solution depicts an initial exponential-like increase in the number of infections up to a

peak, and then a fast decrease due to the depletion of susceptible individuals. However, it is

clear that this dynamic does not correspond to what happens during an outbreak. The main

challenge when using a model based on (1) to describe a real epidemic is that the transmission

rate β and the mean reproduction period δ−1 can change in time because of many factors:

social behaviors (individual awareness, increase or decrease of gatherings, mobility, social dis-

tancing), non-pharmaceutical interventions (use of devices that reduce transmission—such as

masks, introduction of lock-downs), changes in the pathogen infectiousness due to new vari-

ants, reduction of the susceptibility of the population due to vaccination campaigns. In this

evolving scenario, the effective reproduction number Rt [-] is the critical quantity that controls

the spreading of the disease. Rt is the equivalent of R0 in time, i.e., Rt ¼ bðtÞ=dðtÞ � SðtÞ=N,

taking into account that the number of susceptible individuals decreases and the main parame-

ters controlling the spreading of the disease generally change. An essential element for a reli-

able simulation is therefore the assessment of Rt , hence β(t) and δ(t) along with the

compartment S(t), from the available epidemiological data. In the following we will assume

that δ is constant in time, assumption done in many epidemiological applications (see e.g., [2,

4, 5]).

2.2 PINN solution to the SIR model

Here we develop and analyze a PINN-based approach to simultaneously solve the problem (1)

and (2) and estimate the temporal values of the reproduction number by using a time series of

infectious individuals as basic epidemiological information.

A standard NN aims to reconstruct an unknown function u from the knowledge of some

training data points. The NN approximating a generic u, denoted throughout this work by û,

is the recursive composition of the function:

SðlÞðxðlÞÞ ¼ �ðlÞ:ðWðlÞxðlÞ þ bðlÞÞ; ð3Þ

where WðlÞ 2 Rnl�nl� 1 , bðlÞ 2 Rnl , and ϕ(l) are weights, biases, and activation functions of the l-
th layer, respectively. The last layer is the output layer, the others are the hidden layers. We

denote with nl the number of neurons in layer l. Activation functions are user-specified func-

tions with limited range, which are generally non linear in order to provide a source of non lin-

earity to the NN and maintain low weight values. The Matlab-inspired notation ϕ.(x) means

that the function ϕ is applied to each component of the vector x. Let L be the number of hidden

layers. If u : T ! R is the solution of an ordinary differential equation in the domain T , the

input of the first layer reads xð1Þ ¼ t 2 T , so n0 = 1, and the output of the last layer û is a scalar,
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so nL+1 = 1. Then, the NN for u formally reads:

ûðtÞ ¼ SðLþ1Þ � SðLÞ � � � � � Sð1ÞðtÞ: ð4Þ

The NN depends on the set of weights and biases, which are trained through an optimiza-

tion algorithm so as to minimize an appropriate loss function defined as the mean squared

error of û over the set of training points. In the case of PINNs, the information from the gov-

erning equations of the physical system is introduced in a weak way in the loss function by

adding the residual of the differential equations evaluated at some collocation points [31, 32].

For the SIR model (1) and (2), we assume that the training data points for the fitting are the

reported infections. Let ~I j be the number of reported infected individuals at times ~t j, j = 1, . . .,

ND. This might be subject to reporting errors, thus, in general ~I j 6¼ Ið~t jÞ. The residual of the

governing equations is computed over NC collocation points.

We aim at finding a NN representation for the susceptible, infected, and recovered individ-

uals (ŜðtÞ, ÎðtÞ, and R̂ðtÞ, respectively) along with the transmission rate (b̂ðtÞ). Since the state

variables S, I, R span an extremely wide range of values (from zero to the population size

N> 106), the functional search is optimized by a proper scaling:

SðtÞ ¼ CSsðtsÞ; IðtÞ ¼ CIsðtsÞ; RðtÞ ¼ CRsðtsÞ; ð5Þ

where C [-] is an appropriate constant and ts is the dimensionless scaled temporal variable, ts =

(t − t0)/(tf − t0). The system of ODEs (1) for the scaled variables becomes:

_SsðtsÞ ¼ � C1bsðtsÞIsðtsÞSsðtsÞ

_I sðtsÞ ¼ C1bsðtsÞIsðtsÞSsðtsÞ � C2IsðtsÞ

_RsðtsÞ ¼ C2IsðtsÞ

; ts 2 ½0; 1�;

8
>>><

>>>:

ð6Þ

where bsðtsÞ : ½0; 1� ! Rþ, C1 = (tf − t0)C/N and C2 = (tf − t0)δC. The initial conditions (2) are

correspondingly scaled as well as the infectious data ~I j ¼ C~I s;j at times ~t s;j ¼ ð~t j � t0Þ=ðtf � t0Þ.
The SIR model (6) does not consider death and birth processes and assumes a negligible

mortality rate of the disease. Thus, the total population N is constant in time and equal to N =

S + I + R. Under these hypotheses, the PINN model needs only two NNs representing the

behavior of the population: one for the state variable of the susceptible individuals Ŝs, and one

for the infected individuals Î s. The number of recovered individuals is computed as

R̂s ¼
N
C � Î s � Ŝs. A third NN is included for the estimation of the transmission rate b̂s. In this

way, the number of parameters to be tuned during the training is consistently reduced.

It is important to underline that the state variables represent the number of individuals in a

compartment, thus they all have positive outputs. Training the model without imposing this

condition could lead to nonphysical negative NN outputs. The non-negative constraint can be

imposed in the NN in two alternative ways: inserting a penalty term for the negative values of

the NNs (weak constraint) or building the NN architecture so as to allow for positive values

only (hard constraint). The latter prescription can be met by setting the output activation func-

tion, i.e., the one related the last layer, ϕ(L+1), equal for example to the square function. An

experimental comparison between the two approaches shows that the latter is generally more

effective and provides more robust results. The numerical outcomes that follow are therefore

obtained by using the hard constraint prescription for the non-negativity of the solution. The

same constraint is adopted to entail a positive value for βs.
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The selection of the loss function is one of the most sensitive steps in the PINN approach,

given the multi-objective nature of the method. Using the Mean Squared Error (MSE) as loss

measure, the objective is to minimize the mismatch on the ND data:

LDðÎ sÞ ¼ oD
1

ND

XND

j¼1

½Î sð~t s;jÞ � ~I s;j�
2
; ð7Þ

the squared norm of the residual of Eq (6) evaluated on NC collocation points f�t s;ig
NC
i¼1

:

LODEðŜs; Î s; b̂sÞ ¼
1

NC

XNC

i¼1

oS
dŜs

dts
þ C1b̂sÎ sŜs

� �2�
�
�
�t s;i
þ

1

NC

XNC

i¼1

oI
dÎ s
dts
� C1b̂sÎ sŜs þ C2 Î s

� �2�
�
�
�t s;i
þ

1

NC

XNC

i¼1

oR
dR̂s

dts
� C2 Î s

� �2�
�
�
�t s;i
;

ð8Þ

and the misfit on the initial conditions:

LICðŜs; Î sÞ ¼ oS0
Ŝsð0Þ �

N � I0

C

� �2

þ oI0
Î sð0Þ �

I0

C

� �2

þ oR0
R̂2

s ð0Þ ; ð9Þ

where ω� are proper weights needed to balance the relative importance of the entries arising

from each contribution to the global MSE value. Fig 2 shows a diagram of the PINN imple-

mentation for the solution of the scaled SIR model (6).

We explore two possible approaches for the construction of the PINN model, indicated as

joint or split. The joint approach aims to simultaneously calibrate Ŝs, Î s, and b̂s by minimizing

Fig 2. Diagram of the PINN model for the SIR equations with unknown β(t). The parameters of the NNs for β, S, I are obtained by minimizing the

loss functions on the infectious data, and on the residual and initial conditions of the model equations.

https://doi.org/10.1371/journal.pcbi.1012387.g002
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the joint loss function corresponding to the sum of LD, LODE, and LIC:

LjointðŜs; Î s; b̂sÞ ¼ LDðÎ sÞ þ LODEðŜs; Î s; b̂sÞ þ LICðŜs; Î sÞ: ð10Þ

By distinction, the split approach subdivides the overall problem. First, Î s is independently

calibrated on the data error LD (7) only. In this case, a standard NN is used with weight ωD =

1, thus obtaining a differentiable regression function for the data. The only-data regression is

followed by a fully-physics-informed regression, where the parameters defining Ŝs and b̂s are

trained by minimizing:

LsplitðŜs; b̂sÞ ¼ LODEðŜs; b̂sÞ þ LICðŜsÞ: ð11Þ

It is important to underline that in standard data-driven NNs a regularization term is fre-

quently added to the loss function to avoid overfitting on the data. The term related to the

residual in the loss function (Eq 9 in our case) acts as a regularization in PINNs, therefore no

additional regularization has been added (see [20] for more details).

2.3 Reduced SIR model

The system of ODEs in (1) can be further reduced by directly considering the definition of the

effective reproduction number Rt . By easy developments, the model (1) becomes:

_IðtÞ ¼ dðRt � 1ÞIðtÞ

_SðtÞ ¼ � dRtIðtÞ
; t 2 ½t0; tf �:

8
<

:
ð12Þ

where the unknown functions are I(t) and S(t), and the state variable R(t) is simply obtained

from the consistency relationship R(t) = N − S(t) − I(t). The initial conditions (2) still hold.

The new system (12) can be solved sequentially by integrating the upper equation first and

then computing S(t) from the second equation.

This approach reduces the number of functions that are approximated by NNs to two, i.e., I
and Rt, and eliminates any redundant term in the loss function minimized in the PINN

approach. The same scaling as in Eq (5) is used for the state variable I, so that the upper equa-

tion in (12) reads:

_I sðtsÞ ¼ dðtf � t0ÞðRt � 1ÞIsðtsÞ; ts 2 ½0; 1�: ð13Þ

The NNs approximating the variables of interest, i.e., Î s and R̂t , can be obtained by mini-

mizing the mismatch on data LD (Eq (7)) and the squared norm of the residual of Eq (13) on

NC collocation points:

Lr;ODEðÎ s; R̂tÞ ¼
1

NC

XNC

i¼1

dÎ s
dts
� dðtf � t0ÞðR̂t � 1ÞÎ s

� �2�
�
�
�t s;i

ð14Þ

Notice that in this case the contributions in LD and Lr;ODE have a consistent size, hence

there is no need for introducing the weight parameters ω� to balance the loss function terms.

For this reason, we simply set ωD = 1 in the expression (7).

The joint and split approaches can be formulated for this PINN-based model as well. The

joint approach consists in training simultaneously the NNs Î s and R̂t by minimizing the total
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loss function:

Lr;jointðÎ s; R̂tÞ ¼ LDðÎ sÞ þ Lr;ODEðÎ s; R̂tÞ: ð15Þ

By distinction, the split approach implies training Î s on the data only by the minimization

of LD in Eq (7). Then, the time-dependent parameter R̂t is obtained by minimizing:

Lr;splitðR̂tÞ ¼ Lr;ODEðR̂tÞ: ð16Þ

Notice that in the reduced PINN model no initial condition is set, but we let the model

deduce it from the data. From a theoretical viewpoint, initial conditions are not necessary

because Î s is obtained from the data, while the governing differential Eq (13) is used to cali-

brate R̂t. This outcome is relevant because it replicates what typically happens in a real-case

scenario, where there is no actual knowledge about the instant of beginning of the outbreak. In

fact, the case 0 in most outbreaks is unknown and the conventional start of the epidemic has a

number of infected individuals that is usually largely underestimated. The use of the reduced

modeling approach makes it possible to remove the term related to the initial condition from

the loss function.

2.4 SIR model with the hospitalization compartment

The reported infections can be often affected by large uncertainties. Especially at the beginning

of an epidemic outbreak, the disease cannot be easily recognized, either because of the diffi-

culty of correctly identifying the symptoms, or the absence of well-established detection and

surveillance procedures, or the impossibility of reaching and testing all the people infected by

the disease. Moreover, these data can be strongly affected by territorial peculiarities and the

logistic of testing facilities. Hence, founding an epidemiological model on these pieces of infor-

mation can undermine its reliability. A much less uncertain epidemiological datum is the daily

number of individuals that require to be hospitalized. This fraction of the overall number of

infected individuals is representative of the entire I compartment by assuming that hospitaliza-

tion is needed over a certain common threshold level of symptoms in the population.

We introduce a new variable, H, defined as:

HðtÞ ¼ dsIðtÞ; ð17Þ

where σ represents the fraction of infected individuals moving to the hospitalized compart-

ment. Note that also parameter σ might change in time, for example because of the insurgence

of more aggressive variants or the improvement of home treatment. A more convenient for-

mulation uses the cumulative number SH of hospitalized individuals:

SHðtÞ ¼
Z t

t0

HðzÞ dz: ð18Þ

The new formulation of the updated SIR model can be therefore stated as follows. Given

Rt : T ! Rþ, sðtÞ : T ! ½0; 1�, and dðtÞ : T ! Rþ, find SHðtÞ : T ! ½0;N�,
IðtÞ : T ! ½0;N�, and SðtÞ : T ! ½0;N� such that:

_SHðtÞ ¼ dsIðtÞ

_IðtÞ ¼ dðRt � 1ÞIðtÞ

_SðtÞ ¼ � RtdIðtÞ

; 8 t 2 T ;

8
>>><

>>>:

ð19Þ
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with R(t) = N − I(t) − S(t), the initial conditions (2) and SH(t0) = 0. The available information

from the actual epidemiological data is the daily variation ΔH of the cumulative number of hos-

pitalized individuals:

DHðtÞ ¼ SHðtÞ � SHðt � 1Þ ’ _SHðtÞ; ð20Þ

whose values represents the training dataset for the PINN approximation of system (19). As

previously done, the functional search of the approximating NNs is carried out on the properly

scaled quantities I(t) = CIs(ts) (see Eq (5)) and:

DHðtÞ ¼ CHDH;sðtsÞ; ð21Þ

with CH the scaling factor. The upper equation in system (19) with the scaled quantities reads:

CHDH;sðtsÞ ¼ dCssðtsÞIsðtsÞ; ð22Þ

with ss : T ! ½0; 1�, while the second scaled equation is the same as in (13). Hence, the NNs

needed to solve the SIR model with hospitalization data are D̂H;s, Î s, ŝs, and R̂t . The training

data points for the fitting are both the scaled reported infections ~I s;j and the hospitalizations

~DH;s;j at the scaled times ~t s;j, j = 1, . . ., ND. The NNs can be obtained by minimizing the mis-

match (7) on the infection data and on the hospitalization data:

LH ¼
1

ND

XND

j¼1

½D̂H;sð~t s;jÞ � ~DH;s;j�
2
; ð23Þ

and the squared norm of the residuals of Eqs (13) and (22) on NC collocation points:

LH;ODEðD̂H;s; Î s; ŝs; R̂tÞ ¼
1

NC

XNC

i¼1

dÎ s
dts
� dðtf � t0ÞðR̂t � 1ÞÎ s

� �2�
�
�
�t s;i
þ

1

NC

XNC

i¼1

D̂H;s �
dCŝs

CH
Î s

� �2�
�
�
�t s;i
:

ð24Þ

The joint approach consists in the simultaneous estimate of D̂H;s, Î s, ŝs, and R̂t by finding

the minimum to the functional:

LH;jointðD̂H;s; Î s; ŝs; R̂tÞ ¼ LDðÎ sÞ þ LHðD̂H;sÞ þ LH;ODEðD̂H;s; Î s; ŝs; R̂tÞ: ð25Þ

As for the PINN solution to the reduced SIR model, it is not necessary to include the mis-

match on the initial conditions into the global loss function (25) because they are met through

the available training data. Moreover, also the use of non-unitary weights ω� for the different

contributions to LH;joint is not required since all terms are likely to have a similar magnitude.

In the split approach, D̂H;s is directly trained with the hospitalization data only by minimiz-

ing LH in Eq (23). Then, Î s is computed from (22) as:

Î s ¼
CH

dC
D̂H;s

ŝs
; ð26Þ
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and ŝs and R̂t are trained by minimizing:

LH;splitðŝs; R̂tÞ ¼
1

ND

XND

j¼1

CH

dC
D̂H;sð~t s;jÞ
ŝsð~t s;jÞ

� ~I s;j

" #2

þ

1

NC

XNC

i¼1

CH

C
d
dts

D̂H;s

dŝs

 !

� ðtf � t0ÞðR̂t � 1Þ
D̂H;s

ŝs

" #( )2��
�
�
�
�t s;i

:

ð27Þ

In real-world scenarios, the new daily infections is a more common piece of information

than the total number of infected individuals. In order to include these data in the PINN

model, we introduce the cumulative number SI of infected individuals:

SIðtÞ ¼
Z t

t0

IðzÞ dz: ð28Þ

The variation of SI in time coincides with negative variation of the class of susceptible indi-

viduals S(t), so we can simply update the SIR model with hospitalization data (19) by replacing

the last equation with:

_SIðtÞ ¼ dRtIðtÞ : ð29Þ

Since the available information is the daily variation ΔI of the cumulative number of

infected individuals:

DIðtÞ ¼ SIðtÞ � SIðt � 1Þ ’ _SIðtÞ; ð30Þ

we use these values as training data set. As usual, scaled values are considered such as

ΔI = CΔI,s and we assume that the set of scaled values ~DI;s;j is available at the training scaled

times ~t s;j, j = 1, . . ., ND, instead of ~I s;j. The mismatch of D̂I;s, i.e., the NN approximating ΔI,s,

with the data is measured by:

LI ¼
1

ND

XND

j¼1

D̂I;sð~t s;jÞ � ~DI;s;j

h i2

; ð31Þ

while the squared norm of the residual reads:

LHI;ODEðD̂H;s; D̂I;s; Î s; ŝs; R̂tÞ ¼
1

NC

XNC

i¼1

dÎ s
dts
� dðtf � t0ÞðR̂t � 1ÞÎ s

� �2�
�
�
�t s;i
þ

1

NC

XNC

i¼1

D̂H;s �
dCŝs

CH
Î s

� �2�
�
�
�t s;i
þ

1

NC

XNC

i¼1

D̂I;s � dR̂t Î s
h i2��

�
�t s;i
:

ð32Þ

Hence, with the joint approach we aim at minimizing the functional:

LHI;jointðD̂H;s; D̂I;s; Î s; ŝs; R̂tÞ ¼ LIðD̂I;sÞ þ LHðD̂H;sÞþ

LHI;ODEðD̂H;s; D̂I;s; Î s; ŝs; R̂tÞ:
ð33Þ
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By distinction, with the split approach we first train D̂H;s by the available data (see Eq (23)).

Then, we use Eq (26) for Î s and:

D̂I;s ¼
CH

C
R̂tD̂H;s

ŝs

ð34Þ

for D̂I;s, and minimize the functional:

LHI;splitðŝs; R̂tÞ ¼
1

ND

XND

j¼1

CH

C
R̂tD̂H;sð~t s;jÞ
ŝsð~t s;jÞ

� ~DI;s;j

" #2

þ

1

NC

XNC

i¼1

CH

C
d
dts

D̂H;s

dŝs

 !

� ðtf � t0ÞðR̂t � 1Þ
D̂H;s

ŝs

" #( )2�
�
�
�t s;i
:

ð35Þ

This choice for the split approach is based on the fact that hospitalization data are usually

more reliable than infected individuals, hence they are more appropriate for an only-data

regression training.

2.5 Simulation setup

The PINN-based approaches are here implemented by making use of the SciANN software

library [33], a Keras and TensorFlow wrapper specifically developed for physics-informed

deep learning. We analyze the performance of the PINN-based approaches to estimate the

state variables and identify the governing parameters of an epidemiological model mimicking

the setup of the first 90 days of a COVID-like disease outbreak in Italy. The total population is

set to N = 56 × 106 and the mean infectious period to D = 5 days, which is an estimate used for

COVID-19 [4]. The initial value of infectious individuals I0 is set to 1. The accuracy of the

trained NNs is evaluated by the 2-norm of the error with respect to the 2-norm of the reference

solution:

er ¼
k ŷ � yrefk2

k yrefk2

; ð36Þ

where y can be either one of the state variables, or a time-dependent parameter. The relative

error (36) is numerically computed by using 90 points equally spaced in the domain. We con-

sider a number of scenarios, summarized in Table 1, differing for the reference SIR model and

state variables of interest, the selection of the estimated governing parameters, and the avail-

able training data. The first five scenarios are used to validate the numerical model, while the

last two consist of a real application to the Italian COVID-19 epidemic.

For the estimation of the transmission rate β(t) in the basic SIR model (1) and (2), we con-

sider three different scenarios:

• Case 1: constant β. We use this scenario to compare the efficiency of the joint and split

approaches (10) and (11), respectively.

• Case 2: synthetic time-dependent β(t), where the reference values are provided as an analyti-

cal function.

• Case 3: the reference β(t) is obtained from the estimates of Rt in the first months of the

COVID-19 epidemic outbreak in Italy.
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In each case, the training data are the number of infectious individuals per day. These are

synthetically generated by numerically integrating the system (1) using the selected reference

function for β(t). In particular, we used ND = 90 training data points (one value per day). To

take into account possible reporting errors, the data ~I j for each time ~t j are obtained by sam-

pling from a Poisson distribution having as mean Ið~t jÞ. This kind of Poisson error is frequently

assumed on data arising from a counting process. The infectious data and the epidemiological

model are scaled by a factor C = 105 (see Eq (5)).

The reduced SIR model (12) is then used to explore a more realistic scenario with strongly

perturbed data on the infected individuals and accurate data on the number of hospitaliza-

tions. The joint and split approaches (Eqs (15) and (16)) are used to estimate the governing

parameter Rt in the following inverse problems:

• Case 4: synthetic time-dependent β(t) (as in Case 2), subject to a larger error noise on the

infectious data.

• Case 5: an adaptation of Case 4, considering also the hospitalization data and a time-depen-

dent hospitalization fraction σ (to be estimated).

In Case 5, the synthetic data of the daily hospitalizations, f~DH;jg
ND
j¼1

, are obtained by sam-

pling from a Poisson distribution having as mean value the reference solution. The scaled val-

ues are obtained by setting CH = 103.

Finally, we applied the PINN approaches to the infected and hospitalized data reported in

Italy during the first months of the COVID-19 pandemic:

• Case 6: infers a time-dependent Rt while considering σ as a constant.

• Case 7: simultaneously infers Rt and σ as functions of time.

In these scenarios we consider the epidemiological data provided by the Italian surveillance

system [34] from February 21st, 2020 to May 20th, 2020. The period coincides with the advent

of the disease and its initial spread. The vaccination campaign was not started yet and possible

reinfections are negligible. The Italian dataset contains the number of new daily hospitaliza-

tions and reported infections, f~DH;jg
ND
j¼1

and f~DI;jg
ND
j¼1

, respectively, and supplies an estimate of

the COVID-19 reproduction number Rt based on [10].

The scaled values are obtained by setting C and CH equal to the maximum experimented

values for ΔI and ΔH, respectively, in the 90 days taken into consideration. New infections are

multiplied by a reporting ratio αr = 6, following the estimate from Italian Institute of Statistic

based on the sierological data [35].

Table 1. Scenarios adopted to analyze the proposed PINN-based approaches.

State variables Estimated parameters Reference values Training data

Case 1 S,I,R β (constant) β0 = 0.6 d−1 ~I j (Poisson error)

Case 2 S,I,R β (time-dependent) Synthetic β ~I j (Poisson error)

Case 3 S,I,R β (time-dependent) COVID-19 Rt ~I j (Poisson error)

Case 4 I Rt Synthetic β ~I j (40% Gaussian error)

Case 5 I,ΔH Rt ,σ (time-dependent) Synthetic β,σ ~I j (40% Gaussian error), ~DH;j (Poisson error)

Case 6 ΔI,ΔH Rt ,σ (constant) COVID-19 Rt ~D I;j,
~DH;j (COVID-19 dataset)

Case 7 ΔI,ΔH Rt ,σ (time-dependent) COVID-19 Rt ~D I;j,
~DH;j (COVID-19 dataset)

https://doi.org/10.1371/journal.pcbi.1012387.t001
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2.6 Implementation details

The best architecture of the NNs is typically dependent on the desired application. On the one

hand, the number of neurons and hidden layers should be large enough to make the PINN-

based model able to reconstruct the epidemic dynamics. On the other hand, parsimonious

NNs are required to contain the number of parameters, limit the computational times of the

training process, and avoid overfitting.

To select an adequate architecture for the considered PINN model, we compared the error,

the training times and the number of parameters obtained in Cases 1 and 2 using different

number of layers (4, 10) and neurons (5, 25, 50, and 100). The details about this sensitivity

analysis are reported in Appendix A in S1 Text. Neural Network architectures. Hence, the

NNs for Ŝs and Î s are built with 4 hidden layers, 50 neurons for each and tanh as activation

function. In Case 1 the constant transmission rate is treated as a single parameter in the train-

ing. In Cases 2 and 3, b̂s has 4 hidden layers with 100 neurons. In Cases 4 and 5 the NN for R̂t

has the same architecture described for b̂s. In Cases 6 and 7 the NN for R̂t has 4 hidden layers

with 100 neurons each. In Cases 5 and 7 the NN for ŝs has 10 hidden layers with 5 neurons

each. In all scenarios we consider NC = 6000 collocation points randomly sampled in [t0, tf]
from a uniform distribution. The NNs are initialized using Glorot initialization [36] and

trained using Adam optimization algorithm [37] with a reduced-on-plateau learning rate

schedule, which is initialized to 0.001 and halved if learning stagnates.

In the joint approach we trained the NNs for 5000 epochs with batches containing 100

training points. In the split approach we set the number of epochs to 3000 for the data fitting

training and to 1000 for the fully-physics-informed regression, with a batch size equal to 10

and 100, respectively. When the total number of training points (ND + NC) is large, it is a good

practice to use a mini-batch gradient descent as optimization algorithm, which splits the train-

ing dataset into small batches that are used to calculate the loss function and update the model

coefficients at each epoch. The weights ω� are calibrated in the fitting process using the eigen-

values of the Neural Tangent Kernel (NTK) [38], with the specific SciANN built-in function.

The approach leverages the NTK to dynamically and adaptively tune the loss-term weights,

enhancing the performance and robustness of PINNs in solving differential equations and

other physics-informed tasks. Indeed, not using NTK adaptive weights results in larger errors

as it is shown in detail in Appendix A in S1 Text. All simulations were performed on a machine

with two Intel(R) Xeon(R) CPU E5–2680 v2 @ 2.80GHz and 256GB of RAM. We report the

version of the main libraries that were used: Tensorflow = 2.5.3, Keras = 2.5.0,

SciANN = 0.6.6.1.

3 Numerical results

3.1 Model validation

3.1.1 Case 1: Constant transmission rate. The first scenario assumes a constant transmis-

sion rate during the simulation. The reference value for the parameter is fixed to β = β0 = 0.6

d−1. The corresponding basic reproduction number is R0 ¼ 3, which is an estimate of the

basic reproduction number in the COVID-19 epidemic in Italy. The resulting system dynamic

is shown in Fig 3a. The evaluation of a constant parameter does not require an additional NN

for β, and it is implemented through an object of the SciANN parameter class with the addi-

tional non-negative constraint. Both the joint and split approaches obtain solutions that match

well the reference dynamic (see Fig 3a for the results of the split approach). Fig 3b shows that

the convergence of the joint approach to the reference value is slower than the split approach.
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In fact, there are strong oscillations during training. The split approach mitigates these oscilla-

tions and reaches a faster convergence to the reference value.

Table 2 provides a quantitative comparison of the resulting errors for each state variable

along with the training times. Note that for the split approach the sum of the only-data and

physics-informed training is reported. In both approaches the PINN solution reaches an

acceptable accuracy, with a relative error on the order of 10−3 for all state variables, resulting in

a good estimate of the unknown parameter β as well. The split approach reduces the total train-

ing time about by a factor 3, and improves the accuracy with respect to the joint approach by

one order of magnitude on average, hence it appears to be in this case largely preferable.

A second test is carried out by changing the amount of available data for the training. For

instance, we consider only weekly values for the infection data, which are more likely to com-

pensate the errors and oscillations of daily data. This reduces the number of training points to

ND = 13. The model is built and trained as stated in Section 3, with the difference that the

training of Î s in the split method is performed at each epoch on the whole data set and the

Fig 3. Case 1: Constant transmission rate. Comparison between (a) reference solutions of the SIR model (1) and PINN approximations in

the split approach; (b) β0 identification during training of the joint and the split methods.

https://doi.org/10.1371/journal.pcbi.1012387.g003

Table 2. Case 1: Constant transmission rate. Training time, approximation errors, and estimations of the joint and split methods for β = 0.6 d−1. The daily and weekly

infection data correspond to ND = 90 and ND = 13, respectively.

Daily data Weekly data

Joint Split Joint Split

Training time [s] 2223 719 1977 493

Error S 2.763 × 10−3 6.221 × 10−4 2.833 × 10−2 2.247 × 10−2

Error I 3.846 × 10−3 8.444 × 10−4 4.544 × 10−2 4.245 × 10−2

Error R 3.258 × 10−3 7.434 × 10−4 3.276 × 10−2 2.491 × 10−2

Error β 5.086 × 10−3 3.587 × 10−4 4.693 × 10−2 5.187 × 10−2

PINN b̂ 0.59738 0.60007 0.57323 0.56888

https://doi.org/10.1371/journal.pcbi.1012387.t002
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mini-batches are not needed. Moreover, given the overall small size of the training dataset, we

can decrease the maximum number of epochs in the data regression from 3000 to 1000. Train-

ing times and approximation errors reported in Table 2 show an equivalent outcome in terms

of accuracy, but with a strong gain in training time for the split approach. By reducing the

number of samples the amount of information is smaller, hence the accuracy decreases with

respect to a daily updated information. The convergence of the parameter β has a similar

behavior to the one shown previously (Fig 4), with the split method reducing both the oscilla-

tions and the convergence time.

3.1.2 Cases 2 and 3: Time-dependent transmission rates. Case 2 consists of a simulation

of disease spread according to the time-dependent transmission rate plotted in Fig 5. This β(t)
behavior implies two waves of infection, with a maximum number of infectious individuals

two orders of magnitude lower than in Case 1.

Fig 5 shows the reference values of the unknowns and the corresponding NN approxima-

tions. The dashed lines correspond to the mean outcome from 10 different runs, while the grey

bands provide the confidence interval of plus/minus a standard deviation.

At most times the split method provides more stable and accurate results, with smaller vari-

ations from one run to another. The higher stability and speed of convergence of the split

approach can be also appreciated from the error behavior on b̂s during the training (Fig 6).

The overall performance of the PINN approaches is summarized in Table 3.

Both approaches, however, fail to estimate the initial values of β (Fig 5). The low number of

infected individuals and the presence of perturbed data produce an initial dynamic that the

NNs erroneously learn by considering a larger number of initial infected individuals and a

lower initial transmission rate. Errors of this kind represent a common hurdle in epidemiol-

ogy, as the evolution of a disease is extremely difficult to be identified at the beginning of the

epidemic outbreak under the assumption of a temporal-depending transmission rate. For this

reason, Table 3 provides also the error for β during the last 70 days of simulation. These small

errors confirm the accuracy of the PINN estimates when the data provide a clear signal.

Case 3 considers the Rt estimates supplied by the Italian health institute “Istituto Superiore

della Sanità” (ISS) [34] as reference values for the effective reproduction number. These values,

depicted in Fig 7, are used to evaluate the associated transmission rate β in the model and to

synthetically generate the epidemiological data of infected individuals from February 21st to

May 20th, 2020.

Fig 4. Case 1: Constant transmission rate. Comparison between β0 identification during the training of the joint and

split methods for the weekly infection data (ND = 13).

https://doi.org/10.1371/journal.pcbi.1012387.g004
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Note that for the first 20 days the values have been kept equal to 3.012, in order to simulate

the free transmission of the pathogen in a completely susceptible population without restric-

tions in contacts. Fig 7 and Table 3 contain the outcome of the joint and split methods. Simi-

larly to Case 2, the estimation of the temporal evolution of the transmission rate is hard for the

initial times. Both methods can achieve a good accuracy after the first 20 days, as it can be

deduced from Fig 7 and from the errors associated to the last 70 days of the simulation. The

Fig 5. Case 2: Synthetic transmission rate. Comparison between the reference solution of the SIR model and the PINN approximations with

the joint (a) and split (b) approach. Grey bands provide the confidence interval of one standard deviation.

https://doi.org/10.1371/journal.pcbi.1012387.g005

Fig 6. Case 2: Synthetic transmission rate. Comparison between the errors on b̂ sðtÞ during the training with the joint

and split approach.

https://doi.org/10.1371/journal.pcbi.1012387.g006
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Table 3. Cases 2–3: Time-dependent transmission rates. Training time and approximation errors for the state vari-

ables and the estimated parameters with the joint and split approach.

Joint Split

Case 2

Training time [s] 1936 717

Error S 1.814 × 10−3 3.381 × 10−4

Error I 2.501 × 10−2 7.754 × 10−3

Error R 2.288 × 10−1 4.251 × 10−2

Error β 2.678 × 10−1 4.127 × 10−1

Error β (last 70d) 5.979 × 10−2 1.563 × 10−2

Case 3

Training time [s] 1906 726

Error S 1.935 × 10−3 5.031 × 10−4

Error I 4.729 × 10−3 6.006 × 10−3

Error R 2.805 × 10−2 7.101 × 10−3

Error Rt 4.692 × 10−1 6.988 × 10−1

Error Rt (last 70d) 5.341 × 10−2 6.701 × 10−2

https://doi.org/10.1371/journal.pcbi.1012387.t003

Fig 7. Case 3: Transmission rate of the Italian COVID-19. Comparison between the reference solution of the SIR model and the PINN

approximations with the joint (a) and split (b) approach. Grey bands provide the confidence interval for one standard deviation.

https://doi.org/10.1371/journal.pcbi.1012387.g007
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matching is quite accurate, with relative errors on the order of 10−3, and the variance from 10

different runs is also limited. While the gain in accuracy of the split method is not so clear in

this case, the benefit in the training duration is still relevant. Similar results in terms of accu-

racy have been obtained on these test cases when using the reduced implementation (12) of

the split and joint approaches.

3.1.3 Cases 4 and 5: Reduced model and hospitalization data. Case 4 is used to investi-

gate the performance of the joint and split approaches for the reduced model (12) in a syn-

thetic scenario where the data are subject to large errors. The unknown time-dependent

transmission rate is the same as the one of Case 2, whose corresponding reproduction number

is shown in Fig 8.

The time domain is extended to tf = 120 days, which implies two complete waves of infec-

tion. To simulate the typically large uncertainties on the reported daily infections, we generate

synthetic noisy data by perturbing the numerical solution for Ið~t jÞ with a Gaussian error hav-

ing zero mean and coefficient of variation of 40%. The data are then rounded to the closest

integer with the negative values set to 0.

The outcome of the PINN approximations are provided in Fig 8 and Table 4. The larger

errors on the data reduce the accuracy in the estimate of the reproduction number. The two

approaches are almost equivalent in terms of accuracy, but the split one has faster training

times. Clearly, a large uncertainty in the training data reduces the reliability of the split

approach, which mostly relies on this piece of information, while the joint approach compen-

sate possible errors on data with the residuals of the governing equations. Nevertheless, the

accuracy in the reproduction of the Rt appears to be in any case fairly satisfactory, given the

large reported errors. It is worth noting that the solution with PINNs of the proposed reduced

model clearly outperforms the one of the full SIR model when the data are subject to large

errors, as reported in Appendix B in S1 Text.

Case 5 aims at improving the estimate of Rt by introducing the information on the daily

hospitalizations. This entails that also the unknown parameter σ, which is fraction of infected

individuals that become hospitalized, becomes a NN to be trained. The reference σ for this

case is shown in Fig 9. The results of the joint and split approaches are summarized in Fig 9

and Table 4. The inclusion of more reliable data implies a better estimate of Rt with respect to

Fig 8. Case 4: Synthetic transmission rate with large data errors. Reference solution and PINN approximation with the joint (a) and split

(b) approach in the reduced SIR model (12) and noisy data.

https://doi.org/10.1371/journal.pcbi.1012387.g008
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Case 4. This is particularly evident for the split approach, which is able to provide good esti-

mates of both temporal depending parameters (Rt and σ), and thus, lower errors (Table 4).

3.2 Application to real data

3.2.1 Cases 6 and 7: Italian COVID-19 surveillance data. Cases 6 and 7 apply the proce-

dure adopted in Case 5 to the real setting of the Italian COVID-19 epidemic outbreak. The

fraction of the number of infected individuals that becomes hospitalized, σ, is assumed to be

Table 4. Cases 4–5: Reduced model and hospitalization data. Training time and approximation errors for the state

variables and the estimated parameters with the joint and split approaches when considering the hospitalization data

(Case 5) or not (Case 4).

Joint Split

Case 4

Training time [s] 1658 1053

Error I 1.411 × 10−1 1.331 × 10−1

Error Rt 4.961 × 10−1 4.744 × 10−1

Error Rt (last 100d) 3.141 × 10−1 3.336 × 10−1

Case 5

Training time [s] 1829 1445

Error ΔH 8.783 × 10−3 4.722 × 10−3

Error I 1.209 × 10−1 7.434 × 10−2

Error Rt 4.407 × 10−1 4.992 × 10−1

Error Rt (last 100d) 2.410 × 10−1 1.240 × 10−1

Error σ 3.858 × 10−1 1.417 × 10−1

Error σ (last 100d) 2.626 × 10−1 1.145 × 10−1

https://doi.org/10.1371/journal.pcbi.1012387.t004

Fig 9. Case 5: Synthetic data of infections and hospitalizations. Reference solution and PINN approximation in the

joint (a) and split (b) approaches.

https://doi.org/10.1371/journal.pcbi.1012387.g009
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constant in time in Case 6 and time-dependent in Case 7. The goal is to estimate Rt and σ by

means of the presented PINN approaches.

The results of the joint and the split approaches are shown in Figs 10 and 11 for Cases 6 and

7, respectively. We use the reproduction number evaluated by ISS (Fig 10) as a reference value

for comparison. However, it is important to keep in mind that its values have been obtained

with a data driven approach (renewal equation, [10]) on the symptomatic infected individuals.

In Case 6 the joint approach provides an acceptable accuracy on the new infection data, while

Fig 10. Case 6: Constant hospitalization rate. PINN approximations with the joint (a) and split (b) methods for the

Italian COVID-19 outbreak with constant σ. The blue trajectory of Rt is the official estimate by ISS.

https://doi.org/10.1371/journal.pcbi.1012387.g010

Fig 11. Case 7: Time-dependent hospitalization rate. PINN approximations with the joint (a) and split (b) methods

for the Italian COVID-19 outbreak with time-dependent σ. The blue trajectory of Rt is the official estimate by ISS.

https://doi.org/10.1371/journal.pcbi.1012387.g011
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the peak of the daily hospitalizations is underestimated (Fig 10a). The split approach, instead,

is firstly trained on the daily hospitalization well retrieving these high-fidelity data. The second

part of the training, considering both the daily infections and the reduced model equations,

does not achieve the same level of accuracy for the infection data with respect to the joint

approach (Fig 10b). For what concerns the estimation of Rt, the joint approach strongly

underestimates its value at the beginning of the epidemic. By distinction, the split approach

provides a trend of Rt that is fully consistent with the ISS estimates, i.e., a decrease during the

first weeks of the epidemic, followed by an almost stationary value around 1 during the reces-

sion phase. The overall performance of the PINN approaches are summarized in Table 5.

Considering a time-dependent σ (Case 7) helped both approaches to improve the estimate

of both hospitalized and infectious data. Both approaches depict a similar trend for σ, where

the fraction of infected individuals that became hospitalized decreases during March 2020

from a peak of about 23% to about 3%, which is a realistic outcome in the framework of Italian

COVID-19 outbreak. The main differences among the two approaches are still at the begin-

ning of the outbreak, where the joint approach suggests a lower value of σ, while underestimat-

ing the values of Rt. The training time required by the split approach was about 40% of the

time for the joint approach (Table 5).

3.2.2 Forecasting. Cases 1–7 use the complete set of data to infer the past dynamics of the

unknown state variables and parameters. This section analyzes the performance of the PINN

methods in a realistic forecasting scenarios where PINNs are trained using only a portion of

the data, and then employed to produce a short-term forecast of the epidemic. TNote that the

training still consists of an inverse problem, since the time-dependent parameters of the model

are still unknown.

In the Italian COVID-19 setting of Case 7, we trained the PINN model on four temporal

windows of increasing length. As first, the PINN model is trained on the data from February

21st, 2020 (day 0) to March 6th, 2020 (day 15). The NNs are further trained on the data of the

other windows (days [0, 30], [0, 45], [0, 60]), i.e. the training of the same architectures is car-

ried on by sequentially adding new data corresponding to longer temporal widows. This

approach has the advantage of improving the previously trained NNs, instead of starting new

NNs from scratch. Short term forecasts of 15 days are produced at the end of each training

window using the neural networks in extrapolation. Fig 12 compares the trained solutions and

the forecasts at each window with the reported data. The PINN solution obtained by training

the NNs on the whole set of data (result of Case 7) is shown as reference solution.

As one could expect, the projections are not accurate when few data are available or when

the model is close to the peak of the epidemic (Fig 12a and 12b). Good outcomes are achieved

during the recession (Fig 12c and 12f).

Table 5. Cases 6–7: Application to the Italian COVID-19 data. Training time and approximation errors for the state

variables and the estimated parameters with the joint and split approach.

Joint Split

Case 6

Training time [s] 1655 1042

Error Rt 3.881 × 10−1 2.495 × 10−1

Estimated ŝ 0.0686 0.0849

Case 7

Training time [s] 1778 1101

Error Rt 3.646 × 10−1 2.236 × 10−1

https://doi.org/10.1371/journal.pcbi.1012387.t005
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Fig 12. Case 7: Forecasting. PINN predictions of the Italian COVID-19 evolution using the split method on subsequent training

time intervals: (a) 0–15 days, (b) 0–30 days, (c) 0–45 days, (d) 0–60 days. The blue dashed lines, here used as reference solution, are

the outputs of the split approach computed in Case 7 (Fig 11b).

https://doi.org/10.1371/journal.pcbi.1012387.g012
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Similar forecast results are obtained using the joint PINN approach (see Appendix C in S1

Text).

4 Discussion and conclusions

This work proposes two innovative ideas to improve the application of PINNs for the solution

of SIR-based epidemiological models, and to estimate the time-dependent transmission rate,

or the effective reproduction number, of an epidemic. The first idea consists in splitting the

training of the NNs in two steps: the first step provides the fit on the epidemiological data,

while the second step minimizes the residual on the model equations. The performance of the

split approach has been compared to a standard PINN application, which trains simulta-

neously the NNs on the joint loss function on data and residual. The second idea consists in

implementing a modification to the basic model equations, possibly removing the state vari-

ables that are not directly related in the disease transmission and the associated redundant

terms in the loss function. This reduced PINN model has been extended to include both infec-

tion cases and hospitalization data, which are usually more reliable pieces of information.

Synthetic test Cases 1–3 showed that, when infectious data are subject to small errors, both

the split and joint PINN approaches are able to retrieve with high accuracy the system dynam-

ics. The initial training on the data of the split approach provides a clear advantage when mini-

mizing the residual on the model equations and estimating the reproduction number. In fact,

it achieves lower errors (up to an order of magnitude) with faster computational times (speed

up larger than 60% in Cases 2 and 3). This is probably due to more stable results during the

training epochs, as depicted in Fig 3b for a constant transmission (Case 1), and Fig 6 for a

time-dependent transmission (Case 2). However, the simultaneous estimate of the initial con-

ditions and the initial transmission proved to be particularly challenging for both PINN

approaches (Figs 5 and 7). In fact, even small errors on the data become particularly relevant

when there are low number of infections, such as at the beginning of the epidemic. Model

results could improve by assuming a constant initial transmission rate, which is generally in

agreement with the free circulation of the pathogen in absence of interventions.

Besides this inaccuracies in the early times of the outbreak, the Rt estimated by PINN in

Case 3 has a similarly accuracy to the one obtained with the renewal equation [10], approach

that is commonly adopted during outbreaks (see Appendix D in S1 Text).

The large errors that typically characterize the data of the reported daily infections might

deteriorate the retrieval of the temporal changes of the transmission rate and the associated

effective reproduction number (Case 4, Fig 8 and G in S1 Text). For this reason, numerous epi-

demiological analysis are based on data that are less biased by the surveillance system, such as

daily hospitalization data, e.g., [4]. Case 5 shows that the use of daily hospitalizations and infec-

tions into the reduced PINN model allows to improve the accuracy in the estimation of the

uncertain time-varying parameters, in particular both the effective reproduction number Rt

and the fraction of infected individuals requiring hospitalization σ. The split approach still out-

performs the joint counterpart with 20% savings in the training cost, however both approaches

still present limitations at the beginning of the outbreak.

The application to the Italian COVID-19 epidemic (Cases 6 and 7) emphasizes the impor-

tance of considering the fraction of hospitalized individuals, σ, as a temporal-dependent

parameter. In fact, the PINN approximations were not able to accurately follow both time

series of daily hospitalized and infectious data when considering a constant σ (Fig 10). Results

notably improve in the case of a temporal-dependent σ (Fig 11). Many modeling studies

assume a constant σ, with possible temporal variations assigned only on the arrival of new dis-

ease variants or after the deployment of vaccines. Other processes that might directly impact
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this parameter are typically neglected. For example, in the early stages of the outbreak, the fear

of the new disease might prompt many symptomatic infected individuals to seek health care at

the hospital (thus generating a large value of σ). The subsequent overcrowding of the hospitals

and improvement of treatment at home might reduce the value of σ in time. The time-depen-

dent σ values estimated by the PINN approaches (Fig 11) show exactly such a dynamic, with

small differences at the beginning. We argue that also in this application the split approach

outperforms the joint one. Besides the advantages in the computational times (40% faster), the

effective reproduction number obtained with the split approach depicts a closer trajectory to

the reference Rt estimated by the Italian Institute of Health (Fig 11).

The shorter training times and higher accuracy that we consistently obtained for the split

approach in each test case can be attributed to the structure of the loss functions. Splitting the

training implies the minimization of two loss functions which are simpler, thus sparing the

complex solution of a multi-objective optimization problem.

The results presented in Cases 1–7 demonstrate the ability of the PINNs model to retrieve

the past dynamics of an epidemic, to infer the temporal changes in the parameters, and to pos-

sibly fill the gaps among the data (Fig 4). A clear benefit of PINNs with respect to other tradi-

tional epidemiological approaches is that PINNs can directly produce short-term forecasts and

projections of the epidemics. In fact, the calibrated PINNs are functions of time and can be

extrapolated outside the training window. This is explored by analyzing the forecasts produced

by the split PINN approach in the framework of the Italian COVID-19 pandemic (Fig 12).

In general, forecasts based on extrapolation might be extremely far from the real data due

to possible strong fluctuations of the functions outside the training window. Our results show

that the PINNs show smooth behaviors also in extrapolation, which in general are consistent

with the dynamics of the disease spread. We attribute this consistency to the fact that the NNs

are trained using the residual of the ODEs, which informs the model of the ongoing trend.

PINNs, thus, can be particularly interesting for short-term forecasting as well. As one could

expect, the quality of the forecast changes for different training window. If the training interval

stops in conjunction with a peak of the cases, the model hardly predicts the fall in infections in

the following days, as in Fig 12b. Instead, predictions during recession are more accurate (Fig

12c-d). This kind of results are common to many models that attempt predicting the dynamics

of an outbreak. Improvements could be achieved, for example, by using universal models

trained on scaled data [39].

A major limitation of the PINN approach with respect to traditional statistical methods for

Rt inference (such as [10]), is that the deterministic nature of PINN does not provide a quanti-

fication of the uncertainty. For example, when dealing with strongly perturbed data as in Case

4, it would be reasonable to expect a large confidence interval around the estimated Rt values

(see Fig G in S1 Text). Uncertainty quantification (UQ) is a fundamental ingredient in epide-

miological analysis. Unfortunately, it is frequently missing in the PINNs results. Future devel-

opments of the proposed split PINN approach should consider UQ in more complex

compartmental models, for example following the framework proposed by Linka et al. [40]

which combines NNs and Bayesian inference.

This study focuses on the standard and simple SIR model. While the split approach can be

easily adapted to more complex compartmental models (which, for example, consider an

exposed compartment, deaths, re-infections, and vaccinations), the reduced equations

described in (12) will require ad-hoc formulations depending on the model. It is important to

underline that in this simple setting it would be possible to directly use purely data-driven

DNNs to attempt predicting the future data as done in Case 7 (Fig 12). However a comparison

between the results of PINN and DNN has not been presented in this manuscript because

PINN has a wider goal with respect to DNN: PINNs in fact allow the user to also estimate and
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predict the dynamics of model parameters and/or state variables that are not possible to link to

the data if not using the model equations. This information is not available in more standard

DNNs or statistical approaches such as the renewal equation, and it constitutes the main

advantage of PINNs methods.

In conclusion, the proposed split PINN-based approach is a robust and easy-to-implement

tool to monitor the initial spreading of a disease. It provides estimates of the temporal changes

in the model parameters, which is essential to produce more accurate short-term forecasts.
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