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Abstract: With the increase in rainfall intensity, population, and urbanised areas, surface water
flooding (SWF) is an increasing concern impacting properties, businesses, and human lives. Previous
studies have shown that microtopography significantly influences flow paths, flow direction, and
velocity, impacting flood extent and depth, particularly for the shallow flow associated with urban
SWF. This study compares two survey strategies commonly used by flood practitioners, S1 (using
Unmanned Aerial Systems-based RGB data) and S2 (using manned aircraft with LiDAR scanners), to
develop guidelines on where to use each strategy to better characterise microtopography for a range of
flood features. The difference between S1 and S2 in elevation and their accuracies were assessed using
both traditional and robust statistical measures. The results showed that the difference in elevation
between S1 and S2 varies between 11 cm and 37 cm on different land use and microtopographic flood
features. Similarly, the accuracy of S1 ranges between 3 cm and 70 cm, and the accuracy of S2 ranges
between 3.8 cm and 30.3 cm on different microtopographic flood features. Thus, this study suggests
that the flood features of interest in any given flood study would be key to select the most suitable
survey strategy. A decision framework was developed to inform data collection and integration of
the two surveying strategies to better characterise microtopographic features. The findings from
this study will help improve the microtopographic representation of flood features in flood models
and, thus, increase the ability to identify high flood-risk prompt areas accurately. It would also help
manage and maintain drainage assets, spatial planning of sustainable drainage systems, and property
level flood resilience and insurance to better adapt to the effects of climate change. This study is
another step towards standardising flood extent and impact surveying strategies.

Keywords: UAS–RGB survey; LiDAR survey; microtopographic features; pluvial flooding; surface
water flooding; survey strategy decision framework

1. Introduction

The climate around the world is changing. The World Meteorological Organisation
reports that the global mean temperature in 2022 was estimated to have risen 1.11± 0.13 ◦C
above the 1850–1900 pre-industrial average [1]. Abnormally high annual precipitation totals
were observed in South and South-East Asia, eastern China, and the West Siberian plain [1].
In the recent decade (2010–2019), UK summers and winters are, on average, 11% and 4%
wetter compared to previous decades (1981–2010) [2]. The increase in heavy short-duration
storms results in frequent surface water flooding (SWF). The increased impermeable area
and insufficient drainage capacity due to population growth and urbanisation further con-
tribute to SWF [3]. SWF is most prevalent in urban areas, impacting properties, businesses,
infrastructure, and human lives [3]. In England, approximately 5.6 million properties are
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at risk of SWF, whereas 3.1 million properties are at risk of flooding due to rivers and the
sea [3–5]. There are established risk assessment and management approaches for fluvial
flooding [6]. However, surface water flood risk assessment and management are more chal-
lenging due to the complex interactions between the urban environment’s source, pathway,
and receptor. The surface runoff generated by heavy rainfall flows through drains, ditches,
or open channels to discharge into the buried surface water or combined sewer pipes. In
the case of surface water pipes, the runoff is ultimately discharged into a watercourse. For
combined sewer systems, the pipes carry sewage and surface water flows into treatment
facilities, with flows exceeding the capacity of the sewer pipes or the treatment sites being
discharged to water bodies.

A critical task in managing SWF is accurately identifying flood risk areas. Although
surface water flood maps prepared from flood models help identify flood risk areas, there
is a disconnect between the modelled surface water flood maps and the actual flood extent
and depth [7]. The accuracy of a flood model depends on factors such as quality of input
data, boundary conditions, reproduction of the complex interaction between surface flow
and sub-surface drainage networks, and an accurate representation of elements such as
building, vegetation, and other small-scale features related to microtopography [7]. Various
studies have demonstrated the importance of uncertainty quantification for models associ-
ated to the management of natural resources, to understand and predict the phenomena
more accurately and make informed decisions based on it [8,9]. Box et al. [9] demonstrated
that Leaf Area Index (LAI)-based approaches can be reliably extended from low to high
LAI values, for (non-)submerged vegetation, to represent the vegetative friction factor
for modelling river flows. Previous studies indicate that microtopography [10,11] is a
critical factor influencing the extent and risk of local flooding. It influences the flow path,
particularly during shallow water flow associated with urban SWF [7,12–14]. Microtopog-
raphy guides the surface water runoff flow direction and velocity and impacts the flood
extent and depth. In the context of SWF, microtopography is defined as the undulations
on the ground surface due to features such as road kerbs, speed bumps, drainage gullies,
hedgerow bunds, drainage ditches, flood gates, walls, and steps [7,10,11]. With the steady
progress in data availability and computational power, flood models have become more
sophisticated, representing the heterogeneity of urban topography in more detail [15,16].
To capture small-scale features such as kerbs, steps, road cambers, and walls that influence
the flow path, high-resolution topographic data as fine as 10 cm [7,17–19] are required.
Within the context of this study, microtopography is defined as variations in elevation
(planimetry and altimetry) in the order of 10 cm. A detailed characterisation of microto-
pography will advance both experimental and numerical models of the prediction of flood
phenomena. The inclusion of microtopographic features in flood models involves high
computational expenses [20]. Some studies have suggested using simplified models [16]
or merged data [21] to manage this high computational expense. There are also studies
indicating the use of data-driven models such as Artificial Neural Networks (ANN) to
reduce computational costs [16].

Microtopography can be captured and visualised at a range of scales with appropriate
technologies. Different technologies have already been used to map microtopography
for various applications such as archaeology, soil mapping, and flow modelling. Some
digital technologies used for mapping microtopography include Total Stations, the Global
Navigation Satellite System (GNSS), Terrestrial Laser Scanners, and Airborne Laser scanners
(LiDAR—Light Detection and Ranging) [22]. Roosevelt [22] compared the implementation
and efficiency of mapping microtopography by Unmanned Aerial Systems (UAS) and
ground-based Rover Real-Time Kinematic (RTK) GNSS. The study suggested that the use
of UAS is more labour- and cost-efficient, with a significant gain in data quality (average
data density of 95.14 points m−2) compared to RTK GNSS (0.76 points m−2). Regarding
accuracy, the UAS Digital Elevation Model (DEM) showed an average root mean squared
error (RMSE) of 0.21 m at three out of four survey sites. Brubaker et al. [23] investigated
LiDAR data to model microtopography and surface roughness accurately for landscape
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analysis. Their study proved that high-resolution (i.e., ≈10 points m−2) LiDAR data could
model microtopography with a mean difference in elevations of −0.3 m.

Mazzoleni et al. [24] tested the reliability of UAS–RGB-derived microtopography for
hydraulic modelling in tropical environments, where weather conditions and remoteness
of the study area might affect the quality of the retrieved data. The UAS–RGB-derived
(25 cm DEM) geometry was compared with three other DEMs derived from LiDAR (1 m
DEM), RTK–GPS (50 cm DEM), and shuttle radar topography mission (SRTM) (30 m DEM)
data. Results showed that the RMSE of the UAS DEMs of river cross-sections was higher
than RTK–GPS DEMs. Their study also assessed the suitability of UAS-based topography
data for hydraulic modelling and compared it against other DEMs, considering LiDAR
DEMS as the benchmark used by practitioners. The results showed that the UAS-based
model (RMSE = 0.75 m) outperformed the RTK–GPS (RMSE = 0.83 m) for the estimation
of maximum water depth. Backes et al. [14] investigated the effect of using UAS high-
resolution data, with an average Ground Sampling Distance (GSD) of 2 cm, to achieve
accurate flood predictions. The study confirmed the impact of microtopographic features
on flow, pooling and water depth and identified the importance of investigating it in further
detail. Ozdemir et al. [19] demonstrated that when the DEM resolution changes from 1 m
to 10 cm, the flood extent decreases by 6%, flood depth increases by 37%, and velocity
increases by 32% [19]. In addition, Sampson et al. [25] proved that using DEMs at a 10 cm
resolution improves the representation of hydraulic connectivity in flood models with a
significant impact on flood risk assessment.

Aguera Vega et al. [26] investigated the effect of 3D point cloud density on the accuracy
of a UAS-derived Digital Terrain Model (DTM) (GSD ≈ 0.4 cm) at the microtopography
level (0.4 cm to 4.01 cm). The results revealed that the accuracy of their DTM increased
with point density. The maximum accuracy obtained in elevation for the totality of the
point cloud was ≈1.1 cm. When the point cloud density was reduced by 20%, the RMSE
increased by 3%, and when the point cloud density was reduced by >85%, the RMSE
increased exponentially (i.e., a 45% RMSE increase for a 99% reduction in point cloud
density). The authors also reported that the pixel size that minimised the RMSE for
densities ≥20% of the raw data set was 1 cm, which is two times the GSD of the images
used in the data processing.

Kopysc [27] concluded in their study that the accuracy of UAS DEMs was not superior
to aerial laser scanning at a microtopographic level. A UAS DEM with a 5 cm horizontal
and 1 cm vertical RMSE was used and compared with a similar aerial LiDAR. Kopysc [27]
measured the level of soil degradation on hiking trails over four years with the use of
DEMs derived from aerial LiDAR point clouds (24 points m−2) and Structure from Motion
point clouds across two fields. The comparison between the DEMs showed an absolute
difference in height ranging from 0.01 ± 0.01 m to 0.09 ±0.01 m for the first field and from
0 ± 0.01 m to 0.13± 0.01 m for the second field. The author suggested that UAS would be
an easy-to-use and cheaper method to collect up-to-date high-accuracy topographic data
for smaller areas to supplement aerial laser scanning, which is a costly method where time
intervals between every scan are counted in years.

Photogrammetry-based UAS and LiDAR data have been studied for flood mod-
elling [20,28,29] and flood mapping [30,31] applications. Leitao et al. [29] compared a
5 cm resolution UAS-derived raster with a conventional LiDAR raster (Swisstopo; 2 m
resolution) for flood modelling purposes. The accuracy of the vertical dimension of the
LiDAR dataset was 0.5 to 1.5 m, whereas that from the UAS DEM was 0.1 to 0.2 m. The
elevation difference between both rasters ranged between −0.468 m and 0.306 m, with
a mean of 0.06 m and a standard deviation of 0.119 m. Leitao et al. [28] presented the
application of the MBlend merging method of DEM rasters (0.5 × 0.5 m resolution) from
UAS imagery and terrestrial LiDAR and proved its impact on flood models. The flood
modelling results of the reference DEM and merged DEMs showed that the difference
in water depth ranged between −9.8 m to 0.2 mm, and the difference in velocity ranged
between 0.003 to 0.024 m s−1. Similarly, Muthusamy et al. [21] explored the use of merged
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DEMs where higher resolution DEMs (1 m) were used to characterise the river channel
in conjunction with a 30 m resolution DEM for the wider area. The results showed that
merged DEMs reduced the mean flood depth from 3.3 m to 1.81 m and the RMSE in flood
depths from 2.6 m to 0.9 m at a 30 m resolution.

Annis et al. [30] compared the performance of photogrammetry-based UAS DEM
(0.25 m) (vertical accuracy ≈ 0.10 m) and a high-resolution DEM (TINITALY) (10 m)
(vertical accuracy ≈ 16 m) to represent floodplain topography for flood simulations, using
a 1 m LiDAR DEM (vertical accuracy ≈ 0.15–0.3 m) as a benchmark. The different DEMs
were compared as input to hydrologic–hydraulic modelling. The results proved that the
performance of UAS DEM flood simulations were significantly better than the TINITALY
DEM (there was a 72% flood extension matching from TINITALY versus 98% from UAS
DEM flood maps for the 200-year return period simulation) and a good alternative to
LiDAR DEM for flood mapping. Hashemi-Beni et al. [32] performed an accuracy analysis
of the water surface extracted from an UAS-derived DEM (3 cm) with the water surface
data from a nearby stream gauge station and LiDAR data (90 cm). The results showed
that UAS-based water surface was higher and had a difference of 27 cm with a standard
deviation of 15 cm from the USGS stream level elevation [32].

The Environment Agency in England collects airborne LiDAR data regularly to pro-
vide accurate elevation information at a 1 m spatial resolution to the whole of England [33].
UAS–RGB imagery is collected by authorities, companies, and research institutions for
surveillance, infrastructure inspection, and search and rescue missions pre-, during and
post-event. The potential benefits of combining geomatic products derived from UAS–RGB
and aircraft LiDAR data have been highlighted by several authors [28,34,35]. Similarly,
the potential use of UAS–RGB to characterise microtopography has been recognised in
a wide range of studies. However, to date, no studies have focussed on identifying the
microtopographic configuration of flood features in urban areas to aid surface water flood
management at a property level. Better knowledge about the microtopographic features
would help improve flood risk assessment and management, prepare effective emergency
response and evacuation plans, and accurate damage assessment [19,25,36]. Similarly, a
better understanding of the effectiveness of different surveying strategies for the characteri-
sations of various microtopographic features would also help improve surface water flood
management through accurate flood predictions and flood risk assessment and manage-
ment [25,37,38]. Villanueva et al. [39] investigated the possibility of using LIDAR elevation
data for DEM-generation of UAS imaging for flood applications. The results for their study
proved that the accuracy of the DEM generated is comparable to other studies and also
demonstrated the complementarity of these two datasets.

To the authors’ knowledge, limited efforts have been dedicated to developing guide-
lines to choose fit-for-purpose surveying strategies, specially between UAS–RGB and
aircraft LiDAR. The works by [39,40] are perhaps one of the most recent efforts but do
not specifically focus on characterising topographic features that influence surface water
flooding. This paper aims to develop a conceptual survey decision framework for aircraft-
LiDAR vs UAS–RGB strategies to better characterise microtopography features in urban
landscapes. The following three overarching objectives would help achieve the aim.

O1. To identify the data characteristics of the geomatic products derived from standard
UAS–RGB and aircraft–LiDAR surveying strategies used for flood management purposes.

O2. To assess the accuracy and the elevation difference in microtopography of each
surveying strategy for a range of land use classes and flood features.

O3. To devise a decision framework and set of guidelines to collect data and integrate
UAS–RGB and aircraft-LiDAR surveying strategies based on the lessons learnt from O1
and O2.
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2. Materials and Methods
2.1. Study Area

This study focuses on Cockermouth, Cumbria, UK (Figure 1). The town’s estimated
population was around 9494 inhabitants during the 2020 census survey [41], with a pop-
ulation growth of 0.4% estimated from 2011 to 2020 [42]. The site is prone to extreme
floods, with the most recent storm event in October 2021. The 2015 storm event caused
by Storm Desmond impacted around 5500 homes and 1000 businesses in Cumbria [43]. It
also damaged 400 km of road and destroyed 792 bridges and 44 schools [43]. Cockermouth
was one of the worst affected towns in this area [44] with an estimated cost of repair and
reinstatement of around £7 million [43].
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ground points considered in this study.

2.2. Data Collection

Two sampling strategies commonly used by flood risk managers, emergency respon-
ders and flood scientists, were implemented. The first focussed on using a UAS platform
with an embedded RGB sensor. The second strategy relied on a LiDAR sensor mounted on
a manned aircraft. These surveying strategies are usually carried out to characterize the
configuration of the terrain or quantify flood extent and impact, amongst others.

2.2.1. UAS–RGB Data (Survey Strategy S1)

High-resolution aerial imagery in the visible spectrum was collected over the study
area using a Sirius Pro UAS (Topcon Positioning System Inc., Livermore, CA, USA). The
UAS platform, powered by a 5300 mAh Lippo battery (30C, 18.5V), had a wingspan of
163 cm and a length of 120 cm. It was equipped with a Sony Alpha ILCE 6300 PRO camera
(Sony Europe Limited, Weybridge, Surrey, UK). The GSD was 2.23 cm pixel−1 at a flying
altitude of 125 m. The platform also included a 9DOF IMU. The take-off payload of the
platform was 2.7 kg. The flight plan was defined by a multi-pass trajectory with image
capture at predetermined waypoints, ensuring 85% and 65% across the track overlap. Each
waypoint had associated GPS coordinates that defined the centre of the frame and yaw,
pitch, and roll information. The GPS was a GNSS-RTK- L1/L2 and GLONASS with a
planimetric accuracy of 0.01 cm and altimetric accuracy of 0.015 cm. The survey was
conducted between 17 July 2019 and 19 July 2019. The weather conditions during these
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days, based on data from Spadeadam meteorological aerodrome report (METAR), were
surface wind speeds between 2 km h−1 to 14 km h−1 and directions varying from 180◦ to
290◦ with excellent visibility [45]. A total of 11 flights were required to cover the 4.71 km2

surveyed area. All flights were conducted by fully qualified UAS pilots, always following
CAA regulations (CAP 722 and CAP393). This survey strategy will be referred to as S1.

2.2.2. LiDAR Data (Survey Strategy S2)

High-density LiDAR data were collected from a Partenavia P68 Aircraft with a Tele-
dyne Optech Galaxy (Teledyne Optech, Toronto, ON, Canada) (Table 1) topographic laser,
emitting pulses at 18 pulses per minute (ppm) during a flight (2000 feet) conducted be-
tween 14:05 and 17:50 on 23 July 2019. The flight plan was designed to maximise data
quality and consisted of ten overlapping swaths with an ancillary perpendicular swath
across the surveyed area. The Optech Galaxy laser integrates PulseTRAKTM and Swath-
TRAKTM technologies. It combines a 27 kg 0.34 m × 0.34 m × 0.25 m sensor with a
6.5 kg 0.42 m × 0.33 m × 0.10 m power distribution unit (PDU), powered by a 28 V battery
(12 A) that distributes 300 W appropriately to the different components. PulseTRAKTM
provides high pulse repetition frequencies (PRFs) at high altitudes [46]. SwathTRAKTM
enables a constant swath width on the ground by dynamically changing the scan field-of-
view (FOV), thus providing a consistent point density across the surveyed area [46]. The
centre of each LiDAR exposure had associated GPS (Trimble Applanix L1/L2 Card within
the position and orientation module Rover Receiver incorporated into the Optech Galaxy
system) coordinates and yaw, pitch, and roll information. A minimum of five satellites
were locked during data capture to ensure an adequate GPS signal. The weather conditions
during the flight, based on the Spadeadam METAR, were surface wind speeds between
2.5 m s−1 and 4.1 m s−1 and directions varying from 200◦ to 210◦, with a prevailing visibility
of 10 km or more and clear weather conditions (no weather to report) at 25 ◦C [47]. The
flying speed ranged between 56 m s−1 and 76 m s−1. The total surveyed area was 4.71 km2.
This survey strategy will be referred to as S2.

Table 1. Configuration of the Teledyne Optech (Teledyne Optech, Toronto, Canada) laser for the data
collection on 23/07/19. FOV stands for field-of-view.

Parameter Specifications

Topographic laser 1064 nm-near-infrared
Laser classification Class IV (US FDA 21 CFR 1040.10 and 1040.11; IEC/EN 60825-1)
Beam divergence 0.25 mrad (1/e)
Operating altitudes (1,2,3,4) 634–1474 m AGL, nominal
Effective pulse repetition frequency 400–550 Hz
Laser range precision <0.008 m, 1 σ

Scan angle (FOV) 36–60◦

Swath width 0–115% of AGL
Scan frequency 100 Hz
Absolute horizontal accuracy (2,3) 1/10,000 × altitude; 1 σ

Absolute elevation accuracy (2,3) <0.03–0.20 m RMSE from 150–4700 m AGL

2.2.3. RTK–GPS Data

A Topcon Hiper V RTK Network RTK–GPS (Topcon Positioning System Inc., Liv-
ermore, CA, USA) was used to take ground truth measurements at 20 ground control
points (GCPs) and 20 checkpoints (XPs). The GPS planimetric and the altimetric accuracy
was 15 mm and 30 mm, respectively. The GCPs were used to ensure the correct exter-
nal orientation for the S1 imagery. The XPs were used to validate the accuracy of the
geomatic products.

An ancillary data set with 2031 RTK–GPS measurements was obtained (in addition to
the XPs) at walls, floodgates, drainage points, vegetated crests, roads, and grassland areas.
These measurements were used to quantify the accuracy in elevation of both surveying
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strategies at key features of interest (Table 2). The land classes were chosen to assess
the efficiency of the two survey strategies on manmade impermeable areas such as roofs
and roads against permeable areas such as grasslands. The microtopographic features
were chosen based on their influence on surface runoff and potential use in surface water
management and flood risk assessment, as well as based on accessibility criteria. Drainage
points were chosen as they are the first entry point of surface water into both surface water
and combined sewer pipes; the location and elevation of drainage are critical to managing
surface water. Likewise, physical barriers such as walls, floodgates, and vegetated crests
were chosen as they influence the direction and velocity of surface runoff. Roofs, roads,
and grasslands were selected to represent impervious and pervious surfaces, respectively.
All points’ measurements were collected on the same day as the S1 data.

Table 2. Land uses and microtopographic features used in the analysis. * Indicates RTK–GPS ground
control points (GCPs; total 2031) that were collected. The number of GCPs collected is provided in
brackets. Data used for each analysis (differences in elevation (D) or validation (V)) are identified.

Land Use Analysis Description

Road * (343 points) D and V Paved roads, including streets and highways.
Grassland * (585 points) D and V Areas dominated by grass where the soil has more permeability than the manmade road.
Roofs D All manmade structures including residential and commercial.

Microtopographic features Analysis Description

Drainage * (210 points) D and V Inlet point that collects surface water to discharge into sewers. Gully points along roads.

Wall * (431 points) D and V A structure constructed around the boundary of a property that controls or stops the flow of water.
It also includes flood management structures.

Flood gate * (11 points) D and V A gate structure that can be opened and closed and prevents the flow of water into the property.
Vegetated crest * (451 points) D and V A raised embankment that controls the water from rivers.
Road Kerb D A raised edge of a paved road that guides surface water into drainage features.
Steps D A physical barrier that stops entry of surface water into properties.

2.3. Data Processing

The data analysis workflow (Figure 2) required (i) the pixel size determination for S1
and S2, (ii) the quantification of the elevation difference between surveying strategies at
the microtopographic level, and (iii) the validation of both surveying strategies for a range
of microtopographic features.
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2.3.1. Pixel Size Determination for S1 and S2

The S1 RGB imagery was processed with Photoscan Pro version 1.1.6 (Agisoft LLC,
St. Petersburg, Russia). The S1 geomatic products (orthoimage and point cloud) were
generated on a computer with Windows 6bit Operating System, Intel®Core™ i7-5960X
CPU @300GHz CPU and GeoForce GTX TITAN X GPU. Only those images that met the
quality control criteria of spatial coverage, image quality, and image overlap were included
in the photogrammetric process. This process generated geomatic products, including
the orthoimage and the point cloud. To minimise distortion, the 20 GCPs were used to
georeference (i.e., locate, translate, and rotate) the individual frames into the World Geodetic
System WGS84. This process involved manually assigning the field RTK–GPS coordinates
to the centroids of GCP in all the frames. Photoscan calculates the co-registration error for
X, Y, and Z directions automatically by root mean squared error (RMSEco) (Equation (1)).

RMSEco =

√√√√∑N
j=1

[(
x̂j − xj

)2
+
(
ŷj − yj

)2
+
(
ẑj − zj

)2
]

N
(1)

where x, y, and z are RTK–GPS positions of the GCPs. x̂, ŷ, and ẑ are image-derived
coordinates at point, j, and N is the total number of GCPs.

LiDAR data were processed using TerraScan (Terra Solid, Helsinki, Finland). The
multiple swaths were matched, calibrated, and rectified prior to generating the point cloud.
The inter-swatch relative accuracy was better than 0.06 m with the intra-swatch accuracy
being better than 1 cm. All points falling in the river channel and trees were excluded from
further analysis as they are incomparable between S1 and S2. For that purpose, polygons
delineating the tree canopy and the river channel were digitised. The ‘Extract LAS’ function
in ArcGIS Pro (Esri, Redlands, CA, USA) was used to exclude the points on water and trees
from the S2 point cloud and the S1-derived geomatic products.

The point clouds were then rasterised to DSMs using the ‘LAS dataset to Raster’
function in ArcGIS Pro (Esri, Redlands, CA). A dataset layer with the first returns was
used in all instances to generate the DSM for the LiDAR data. The elevation points in the
DSM raster were calculated by the IDW interpolation method and binning without filling
the voids.

The average point cloud spacings of the S1 and S2 data were obtained automatically
from ArcGIS Pro (Esri, Redlands, CA). The percentage of empty pixels and the number of
points per pixel were calculated for a range of pixel sizes to understand the distribution of
points on both datasets and choose the optimum pixel size for further comparative study.
This operation was carried out in ArcGIS Pro (Esri, Redlands, CA, USA) using the ‘IsNull’
and ‘LAS Point Statistics as Raster’ functions. Within this context, empty pixels refer to
those pixels that contain no elevation measurements. Chow et al. [48] stated that the general
rule of generating DSM from LiDAR point clouds is that the pixel size should be equal to or
greater than the point cloud spacing to achieve reasonable data coverage. Within the context
of this study, the DSM pixel size must also be fine enough to capture microtopographic
features. As this study aims to compare the two survey strategies to characterise flood
information at the microtopographic level, the optimum pixel size must be small enough to
capture microtopographic flood features with a reasonable data coverage of the study area
by both datasets. Thus, the optimum pixel size for comparison was identified by finding
the midpoint value of the smallest pixel value achievable for the two strategies based on
the point cloud spacing.

2.3.2. Difference in Elevation between S1 and S2

The difference in elevation between S1 and S2 DSMs was assessed by subtracting the
elevation of S2 from S1 for each pixel in ArcGIS Pro (Esri, Redlands, CA). Positive values
indicated the elevation from S1 was higher than S2. Both traditional and robust statistical
metrics [49] were calculated using R studio (Integrated development platform for R, Boston,
MA, USA).
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Traditional statistical metrics assume that the variable of interest (i.e., the difference in
elevation) follows a Gaussian distribution and that no outliers exist. The traditional metrics
rely on the estimation of mean error, standard deviation, and RMSEe metrics (Table 3).
Instead, the robust statistical metrics [49] remove the influence of outliers and detach the
assumption of normal distribution from the metrics. The robust metrics are the median,
normalised median absolute deviation, 68.3% quantile, and 95% quantile [49] (Table 3).
Values outside the interquartile range were mapped to visually identify areas and features
with large elevation differences and exclude incomparable pixels from further analysis.
Incomparable pixels included pixels on shadows, moving vehicles, and photogrammetric
processing errors. These pixels were incomparable as the large differences in elevation
were either a result of moving objects between survey campaigns or data processing errors.
Exclusion of such pixels was carried out using the ‘Set Null’ function in ArcGIS Pro (Esri,
Redlands, CA, USA).

Table 3. Traditional and robust statistical metrics for errors. N is the total number of independent
observations. ∆hi denotes the individual elevation differences between strategies or errors and
I = 1, . . . ,n are independent observations. σ̂ stands for standard deviation. RMSEe stands for root
mean squared error, n denotes the number of data points, µ̂ denotes mean, m∆h denotes median, and
NMAD denotes normalized median absolute deviation.

Statistic Equation

RMSEe RMSE=
√

1
n ∑n

i=1 ∆h2
i

Mean error µ̂ = 1
n ∑n

i=1 ∆hi

Standard deviation σ̂=
√

n−1 ∑n
i=1
(
∆hi − ˆ̂µ

)2

Median Q̂∆h(0.5) = m∆h
NMAD NMAD = 1.4826 ∗mediani(|∆hi −m∆h| )

68.3% Quantile Q̂|∆h|(0.683)
95% Quantile Q̂|∆h|(0.95)

The differences in elevation were analysed for both land use classes and microtopo-
graphic flood features (Table 2). Land use classes were identified from Ordnance Survey
data [50], whereas microtopographic features were identified visually in the orthoimage
and manually digitised. Only pixels where both S1 and S2 had elevation values were
considered for analysis. The analysis was carried out in a GIS environment (ArcGIS Pro,
Esri, Redlands, CA, USA). A non-parametric Kruskal–Wallis test was carried out to iden-
tify whether the differences in elevation between S1 and S2 were statistically significant
between features and land classes.

2.3.3. Validation

Twenty XPs were used to validate the accuracy of the S1 orthoimage in X, Y, and
Z dimensions. The ancillary ground truth data set (2031 points) was used to compare
the accuracy in the vertical dimension of both S1 and S2 DSMs at key features (Table 2).
The accuracy was calculated by subtracting RTK–GPS measurements from S1 and S2
measurements. Positive values indicated the elevation from the surveying strategy was
higher than the ground truth measurement, whereas negative values indicated the elevation
was lower than the ground truth. Only RTK–GPS measurements where both S1 and S2
values were available were considered for analysis. Both traditional and robust statistical
metrics were calculated in R studio (Integrated development platform for R, Boston, MA).
The interquartile range of the resulting values (errors) was calculated to determine the
dataset’s mid-spread and outliers (i.e., values outside the interquartile range). The outliers
were mapped to identify those areas and features that were error prone. The accuracy was
also assessed over the flood features identified in Table 2.
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3. Results
3.1. Pixel Size Determination for S1 and S2

Under S1, the photogrammetric analysis was carried out on 6073 UAS–RGB aerial
images that met the quality criteria. An orthoimage of a 3 cm GSD and a dense point cloud
with an average 8 cm point spacing was generated. The co-registration error of X, Y, and Z
at the GCPs was 3.85 cm, 3.57 cm, and 3.57 cm, respectively. The LiDAR data produced
ten tiles of LAS files with point cloud spacing between 12 cm and 17 cm (average: 15.5 cm,
SD: 1.8 cm). After the removal of the river channel and tree canopy from the dataset,
the point cloud spacing of the LAS files ranged from 13 cm and 17 cm (average: 16.2 cm,
SD: 1.3 cm).

Figure 3 shows the effect of pixel size on the number of empty pixels and the effect on
the number of points per pixel for both surveying strategies. As the pixel size increases,
the % of empty pixels reduces. However, the rate of reduction is not the same for both
strategies. The empty pixels in S1 reduce to less than 1% at pixel sizes that are 1.5 times the
point cloud spacing (i.e., 12 cm). However, for S2, the percentage of empty pixels reduces
to less than 1% only when the pixel size is increased to 3 times the average point cloud
spacing (i.e., 48 cm).

Remote Sens. 2023, 15, x FOR PEER REVIEW  11  of  23 
 

 

considering the point cloud spacing for S1 is 8 cm, and the average point cloud spacing 

for S2 is 16 cm. S1 and S2 point cloud data were both rasterized to DSMs of 12 cm pixel 

sizes. 

 
(a)  (b) 

Figure 3. Graph showing  (a)  the percentage of empty pixels  in  the raster and  (b)  the number of 

points in a pixel as the pixel size changes. 

3.2. Difference in Elevation between S1 and S2 

The  histogram  of  the  elevation difference  between  S1  and  S2 presented  negative 

skewness  and  showed  leptokurtic  patterns.  When  the  outliers  are  removed,  the 

distribution changed substantially (Figure 4), thus affecting the configuration of minimum 

(from ≈−540 m to ≈−11 cm), maximum (≈70 m to ≈43 cm), and mean values (10.9 cm to 15.8 

cm). The NMAD value, the robust estimator of the deviation, was 9.9 cm. The 68.3% and 

95% quantile values were 22.4 cm and 13.3 m. These results reinstated that the distribution 

of the difference in elevation between strategies was not normal, and, therefore, the use of 

robust statistical metrics is recommended. 

 

Figure 4. Histogram showing distribution of difference between S1 and S2 for an extent (−1000 cm, 

1000 cm). Inset plot shows data distribution without outliers. 

When  the  land  classes were  considered  (Figure  5),  the median  of  the  elevation 

difference was between 13 cm and 17 cm for all classes (always >10 cm). All medians were 

positive which indicated that the elevation from S1 was systematically higher than S2. The 

68.3% quantile and NMAD presented >10 cm of difference for all land classes. When the 

Figure 3. Graph showing (a) the percentage of empty pixels in the raster and (b) the number of points
in a pixel as the pixel size changes.

The average number of points in a pixel and their standard deviation (Figure 3)
increases at a similar rate for both strategies when the pixel size increases. Figure 3b shows
a flatter curve and a smaller standard deviation for S2 data than for S1.

As this study aims to capture microtopographic features, the midpoint of the smallest
possible pixel size of both strategies was selected for further analysis. This was 12 cm,
considering the point cloud spacing for S1 is 8 cm, and the average point cloud spacing for
S2 is 16 cm. S1 and S2 point cloud data were both rasterized to DSMs of 12 cm pixel sizes.

3.2. Difference in Elevation between S1 and S2

The histogram of the elevation difference between S1 and S2 presented negative
skewness and showed leptokurtic patterns. When the outliers are removed, the distri-
bution changed substantially (Figure 4), thus affecting the configuration of minimum
(from ≈−540 m to ≈−11 cm), maximum (≈70 m to ≈43 cm), and mean values (10.9 cm
to 15.8 cm). The NMAD value, the robust estimator of the deviation, was 9.9 cm. The
68.3% and 95% quantile values were 22.4 cm and 13.3 m. These results reinstated that the
distribution of the difference in elevation between strategies was not normal, and, therefore,
the use of robust statistical metrics is recommended.
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Figure 4. Histogram showing distribution of difference between S1 and S2 for an extent (−1000 cm,
1000 cm). Inset plot shows data distribution without outliers.

When the land classes were considered (Figure 5), the median of the elevation dif-
ference was between 13 cm and 17 cm for all classes (always >10 cm). All medians were
positive which indicated that the elevation from S1 was systematically higher than S2.
The 68.3% quantile and NMAD presented >10 cm of difference for all land classes. When
the microtopographic flood features were considered (Figure 5), the median elevation
difference was between 11 cm and 37 cm for all flood features except kerbs (≈8 cm). The
mean error and median were always positive. The NMAD had a difference of >10 cm on
all flood features (except kerbs). The Kruskal–Wallis test showed that the median ranks
of the differences were significantly different among land use classes and flood features
(p-value < 0.001).

Remote Sens. 2023, 15, x FOR PEER REVIEW  12  of  23 
 

 

microtopographic  flood  features  were  considered  (Figure  5),  the  median  elevation 

difference was between 11 cm and 37 cm for all flood features except kerbs (≈8 cm). The 

mean error and median were always positive. The NMAD had a difference of >10 cm on 

all flood features (except kerbs). The Kruskal–Wallis test showed that the median ranks of 

the differences were significantly different among land use classes and flood features (p-

value < 0.001). 

 

Figure  5.  Plot  showing  traditional  and  robust  statistical metrics  of  the  difference  in  elevation 

between S1 and S2 for all classes combined and per land class and microtopographic feature. IQR 

stands  for  interquartile  range.  NMAD  stands  for  normalized  median  absolute  deviation. 

quantile_68  stands  for  68.3%  quantile.  quantile_95  stands  for  95%  quantile.  VEMB  stands  for 

vegetated embankment. 

The elevation difference of 50% of the pixels was 15.3 cm, and 68.3% of the pixels fell 

within 22.4 cm. The outliers identified were outside the interval [−11 cm, 43 cm] and fell 

on  the edge of  the  roofs,  trees, and shrubs, as well as hedgerows and narrow bridges 

(Figure 6). Some random points on the road and the roof of buildings were outliers, with 

a large difference of more than 500 m in elevation difference. 

Figure 5. Plot showing traditional and robust statistical metrics of the difference in elevation between
S1 and S2 for all classes combined and per land class and microtopographic feature. IQR stands for
interquartile range. NMAD stands for normalized median absolute deviation. quantile_68 stands for
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The elevation difference of 50% of the pixels was 15.3 cm, and 68.3% of the pixels
fell within 22.4 cm. The outliers identified were outside the interval [−11 cm, 43 cm] and
fell on the edge of the roofs, trees, and shrubs, as well as hedgerows and narrow bridges
(Figure 6). Some random points on the road and the roof of buildings were outliers, with a
large difference of more than 500 m in elevation difference.

Remote Sens. 2023, 15, x FOR PEER REVIEW  13  of  23 
 

 

 

Figure 6. Spatial distribution of differences in elevation (cm) between S1 and S2 on various features. 

3.3. Validation   

The distribution of the errors for S1 and S2 (Figures 7 and 8) showed a departure from 

normality.  Both  distributions  presented  positive  skew  and  leptokurtic  patterns.  The 

outliers  identified had an  impact on the statistical metrics calculated, thus affecting the 

measures of central tendency and dispersion. For example, the mean error of S1 reduced 

from 18 cm to 6 cm, and the mean error of S2 changed from a positive to a negative value. 

A similar pattern was observed for the reported maximum values, which changed from 

≈560 cm to ≈40 cm (S1) and from >800 cm to <20 cm (S2). The NMAD for both S1 (i.e., 11 

cm) and S2 (i.e., 9 cm) was slightly different from the 68.3% quantile (i.e., 15 cm for both 

S1 and S2). This indicated that the data were not normally distributed when outliers are 

present and confirmed  the need  to use robust statistical metrics  [49]. For all combined 

features and land classes (Figure 9), the absolute mean error (excluding the outliers) and 

the median were approximately  the same  for S1 and S2 and always below 8.5 cm. The 

NMAD was higher than the median for both strategies. The NMAD and the 95% quantile 

were larger for S1 than S2, whereas the 68.3% quantile was similar for both S1 and S2. 

 

Figure 7. Histogram  showing distribution of  the difference between S1  for an  extent.  Inset plot 

shows data distribution when outliers are removed. 

Figure 6. Spatial distribution of differences in elevation (cm) between S1 and S2 on various features.

3.3. Validation

The distribution of the errors for S1 and S2 (Figures 7 and 8) showed a departure from
normality. Both distributions presented positive skew and leptokurtic patterns. The outliers
identified had an impact on the statistical metrics calculated, thus affecting the measures of
central tendency and dispersion. For example, the mean error of S1 reduced from 18 cm
to 6 cm, and the mean error of S2 changed from a positive to a negative value. A similar
pattern was observed for the reported maximum values, which changed from ≈560 cm to
≈40 cm (S1) and from >800 cm to <20 cm (S2). The NMAD for both S1 (i.e., 11 cm) and S2
(i.e., 9 cm) was slightly different from the 68.3% quantile (i.e., 15 cm for both S1 and S2).
This indicated that the data were not normally distributed when outliers are present and
confirmed the need to use robust statistical metrics [49]. For all combined features and land
classes (Figure 9), the absolute mean error (excluding the outliers) and the median were
approximately the same for S1 and S2 and always below 8.5 cm. The NMAD was higher
than the median for both strategies. The NMAD and the 95% quantile were larger for S1
than S2, whereas the 68.3% quantile was similar for both S1 and S2.
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The traditional and robust metrics confirmed the non-normality of the data for each
land class (Figure 9). S1 presented a smaller median on roads, while S2 showed a smaller
median on grasslands. The mean and median for roads and grasslands were negative for
S2 (underestimation), while for S1 they were positive (overestimation). This was consistent
with the results obtained in the previous section where the difference in elevation of S2
from S1 (S1–S2) was always positive. The mean error before and after removing outliers
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was close to the median for both S1 and S2 on roads and grasslands. However, the standard
deviation changed when the outliers were removed.

The traditional and robust statistical metrics also highlighted the non-normality of
data at the feature level (Figure 9) and differences in error magnitudes per feature. S1
presented a smaller median for drainage, the top of the wall, and the top of the vegetated
crest, and S2 offered a smaller median for the bottom of the wall and the bottom of the
vegetated crest. The medians of both S1 and S2 were >10 cm at the bottom of the wall and
at the bottom of the vegetated crest. The median for S1 was positive (overestimated) at
drainage and the top of the vegetated crest and was negative (underestimated) at the top
of the wall. The median for S2 was negative (underestimated) at drainage, the top of the
wall and at the top of the vegetated crest and >10 cm at all features, except for the top of
the vegetated crest. Figure 9 also depicts the patterns for the quantiles for each feature.
S2 presented a smaller median on the bottom of the wall and the top and bottom of the
vegetated crest.

For both strategies, outliers were identified on uneven surfaces, vegetated areas, walls,
bridges, drains, and shadows of tall structures (Figure 10). The number of outliers was
more significant for S1 than for S2. For S1, most outliers were found at the bottom of the
brick wall, at the bottom of the vegetated crest, and where the surface was either uneven
or vegetated. There were also a few outliers on the top of the brick wall and features such
as roads or drains in the shadow of tall structures were also outliers. The outliers for S2
were generally detected in the same features as in the S1 data and were mainly found at the
bottom of the vegetated crest and at the top and bottom of the brick wall. The number of
outliers was larger for S2 compared to S1 on drain points. The percentage of outliers never
exceeded 27% for a given feature. Note that the outliers of S1 that fell on the road bridge
were not outliers under S2. Where there was a tall structure casting a shadow on the road,
both S1 and S2 gave a significant difference in elevation from the ground truth.
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Figure 10. Examples of features where outliers are identified for both S1 and S2. Blue markers
indicate outliers. Pink markers are points which fell within the interquartile range.

In general, S1 data captured more points at all flood features compared to S2.

4. Discussion
4.1. Framework Development

This study compared a typical survey specification for a UAS-based RGB survey (S1)
and for a manned aircraft LiDAR survey (S2) commonly used for flood risk management
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activities. Both survey techniques can generate high-resolution geomatic products that
enable the characterization of microtopography. Based on the results, a decision framework
(Figure 11) was developed to identify the most appropriate survey strategy (S1 or S2) to
characterize different microtopographic features. The framework helps identify whether
these two strategies could be used interchangeably or should be specific to a certain
feature. The decision criterion is driven by the features of interest, the median value of
the differences in elevation between the two strategies considered, their accuracies and
thresholds of tolerable discrepancy, and error. As the study focuses on characterizing
microtopographic features, these thresholds are set to 10 cm. The threshold, as well as the
decision criteria, could be defined differently depending on the purpose of the survey.
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The choice of survey strategy depends on the microtopographic features present
within the survey extent. When the median value of the elevation difference between S1
and S2 on a feature is <10 cm, both strategies would give similar outcomes and, therefore,
both strategies can be used interchangeably. The median accuracy will further inform which
strategy to use to minimize the error. However, when the median difference is >10 cm, the
choice of strategy can yield considerably different results. The median accuracy will inform
which strategy to use in a particular set of circumstances. When multiple features are to be
surveyed, combining the different surveying approaches would be most beneficial. Based
on these criteria, both surveying strategies can be used interchangeably when characterizing
kerbs. The difference in elevation between S1 and S2 was less than the 10 cm threshold set
up to characterize microtopography. Therefore, both strategies would provide elevation
values that would enable a similar characterization of kerbs.

For any land classes and features other than kerbs, the median difference in elevation
between S1 and S2 was >10 cm. Therefore, a further median accuracy assessment guided
the choice of the best survey strategy. The median accuracy was used to assess which
strategy was best placed for a given feature or land class. For roads, drainage, walls, and
vegetated crests, surveyors are recommended to use S1 as it provides smaller median error
values than S2. For grasslands, S2 is recommended when applying the same reasoning. For
floodgates and steps, the accuracy could not be estimated due to a lack of available data
points and, therefore, further research is required to identify the best sampling strategy. For
land classes and features with large (>10 cm) median differences in elevation and median
accuracy, ground-based sensors and UAS oblique imagery may be most appropriate. It
should be noted that there could be seasonal variation in elevation for some features.
For example, some types of grassland areas could experience seasonal changes of more
than 30 cm between summer and winter surveys as the vegetation experiences the spring
seasonal growth. The cost-effectiveness of surveying these areas, as well as the surveying
frequency will be defined by these seasonal patterns.

This framework suggests that the features of interest within the survey area will
need to be identified prior to survey commencement. Currently, this would have to be
determined by visual inspection.
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The range of results obtained in this present study are consistent with those by
Leitao et al. [29]. The authors compared the elevation between UAS–RGB and LiDAR
DEMs. The mean and standard deviation of the elevation differences were 6 cm and
11.9 cm, respectively. In the present work, the mean and standard deviation were 10.9 cm
and 9.2 cm, respectively.

The difference between S1 and S2 was consistently positive, showing that S1 systemat-
ically provided larger elevation readings than S2. The difference between strategies was
approximately 13 cm on buildings, 15 cm on roads, and 17 cm on grasslands (Figure 5).

A large difference between strategies was found at the edge of the roofs. This could be
due to the difference in the angle of both the imagery (S1) and laser rays (S2). It is to be
noted that S1 captures nadir imagery and, therefore, does not enable the characterisation of
critical water ingress points such as property windows and doors. UAS oblique imagery
could possibly address this challenge, improving flood risk assessment at the property
level [51–54]. This in turn will help identify those properties in need of flood resilience and
resistance measures. The large difference in elevation between strategies on drainage, walls
and steps, as well as the large errors at the bottom of urban features (wall and vegetated
embankments), could be explained by the same principle. It was also noted that thin
features such as floodgates and flood barriers on the nadir images had a low number of
points. The framework could be further enhanced by integrating the use of oblique imagery
from either UASs or ground-based scanners.

It has to be noted that the accuracy analysis in the present study showed that S2
underestimated elevation systematically, whereas S1 systematically overestimated. Overes-
timation could mislead flood managers to believe that properties are better protected than
they actually are. It could lead to inaccurate flood prediction, an inadequate design of flood
remedial work, and an incorrect flood risk assessment and cost estimation.

The framework proposed here will promote the use and uptake of surveying technolo-
gies for microtopographic characterisation. There is a major role of parameter uncertainty
in flood model selection and the resulting accuracy. Recent studies [55] report the effect that
the uncertainty in the estimated topographic levels can have in urban flood simulations
when using GIS-based dual coupled hydraulic models. Amongst other factors, the spatial
discretization associated with local meshing, the small-scale variability of the physical
parameters and the seasonal variation of the vegetation are reasons for the uncertainty.
Microtopographic information could contribute to address these sources of uncertainty
and enhance both model calibration and validation. This framework will directly con-
tribute to enhance flood modelling and management practices by a better representation
of microtopographic features. Several authors have already demonstrated the impact
microtopography can have in flood modelling outcomes. For example, the studies by
Ozdemir et al. [19] and Shreshtha et al. [56] have demonstrated the importance of high-
resolution spatial data and completeness of data for urban flood modelling. As the reso-
lution becomes finer, small-scale features are easily identifiable, thus improving the flood
predictions for shallow surface water flows in urban environments [19], as demonstrated
by previous authors.

A better characterisation of microtopography enhances surface water flow models,
identifying areas at risk of SWF more accurately and implementing appropriate flood
remedial works. Better surface water flow simulation will also support the planning and
implementation of sustainable urban drainage systems (SUDS) [19]. The microtopographic
information from high-resolution data would also help to identify microtopographic flood
resilience measures installed in properties and help flood managers to prioritise their
emergency resources accordingly [51]. The benefit of assessing the flood resilience of a
property would also support flood insurance companies. The outcomes presented here
will also contribute to the development of indicators on the “mitigation and adaptation to
increasing flood” of the 25-Year Environmental Plan under the Resilience theme [57,58].

Inclusion of more microtopographic features by use of high-resolution data on flood
modelling would require a high processing capacity of computers and increased simu-
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lation time, due to the complexity of the calculation for a hydraulic model with a pro-
hibitively high-resolution mesh [59]. Other studies have established the possibility of
integrating high-resolution datasets on critical features and merging different datasets to
address this challenge [60]. Muthusamy et al. [21] demonstrated the use of merged high-
resolution (1 m) DEMs with coarser resolution (50 m) DEMs in fluvial flood modelling to
improve the characterisation of the river channel and how it reduces the error in mean flood
depth from 150% to 20% and the overall RMSE in flood depth from 5.26 m to 0.98 m at a
50 m resolution. Leitao et al. [28] explored three DEM merging methods with LiDAR and
UAS–RGB DEMs and concluded the MBlend method performed better in combining two
DEMs where the elevation artefacts were similar to the reference DEM. The study also
showed DEM merging could be used to improve the quality of flood modelling results by
the use of higher quality DEMs [60,61]. This framework developed as part of this study
would help to improve the quality of topographic data by identifying an accurate dataset
for each feature to support the integration or merging of different datasets to improve the
accuracy of microtopographic information.

4.2. Limitations and Future Work

This study compares two typical survey specifications used for flood studies. Both
survey strategies could be improved by changing the survey specifications to maximise
the characterisation of microtopography. Further work is required to identify the survey
specifications that maximise the capture of microtopographic detail with each strategy.
The study is carried out only on limited flood features, and the inclusion of other relevant
flood features should be further explored. The analysis presented here has excluded
vegetation from the analysis. Exclusion of vegetation could be automated using machine
learning, image classification, or the techniques-based estimation of Leaf Area Index [62].
The use of GPS-based equipment is usually challenging in these locations. Further work
should explore this type of coverage using optical surveys (e.g., total stations and ground-
based scanners).

The framework is limited to a single criterion of accuracy and elevation difference
between the two survey strategies. This could be further improved by including other
important aspects such as cost and operational constraints [63]. UAS capital costs are
lower than those associated with aircraft equipment. There is also the cost associated with
successful deployment, including training, crew size, and other additional operational
costs such as those required for the provision of health and safety measures [63]. As UAS
become more popular, sub-contractor costs are expected to decrease [63]. Further work
would be required to quantify how the improved accuracy in SWF predictions with the
use of high-quality topographic data could help in mitigating flood risk on properties and
critical infrastructure as well as managing drainage assets and storm water discharges
into rivers.

To date, no clear guidelines or standards have been proposed for the error levels
to be targeted for specific flood management purposes. To the authors’ knowledge, this
study is another attempt towards quantifying the effect that surveying strategies can
have on the characterisation of flood features and permeable/impervious surfaces at the
microtopographic level.

5. Conclusions

This paper reports the data characteristics of point clouds derived from a typical survey
specification of UAS–RGB and manned aircraft LiDAR. The findings reinstate that careful
thought needs to be put on choosing a survey strategy to obtain accurate microtopographic
information. The decision framework developed as part of this study will aid the selection
of the most appropriate survey strategy based on an accuracy threshold of 10 cm. In brief,
features such as roads, drainage, walls, and vegetated crests (top) are best characterized
following UAS–RGB (S1), whereas manned aircraft LIDAR (S2) is best suited for grasslands.
Kerbs are well characterized with either S1 or S2 for the targeted threshold (10 cm). In areas
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where multiple features are present, the combined use of S1 and S2 is proposed. Systematic
overestimation of elevation (S1) and underestimations (S2) need to be considered when
making flood assessments on flood risk or flood damages. For the elevation data on features
such as the edge of buildings, thin features should be used for flood assessment with careful
consideration as they are error prone. The results presented here are for a set of typical
specification. It is to be noted that an impact on the accuracy values is to be expected
when/if the survey specifics, such as flight altitude and UAS speed, are changed.

In addition to the accuracy of features of interest, the surveyors also need to carefully
consider other factors such as the extent of the survey area, cost, safety, resource avail-
ability, time, and operational constraints [63]. This decision framework for data collection
could be further developed to include other survey aspects (e.g., alternative sensors and
oblique imagery).

Accurate topographic information is critical for planning, design, and maintenance of
existing drainage assets and sustainable urban drainage systems (SUDS). Knowledge about
urban features that manage the flood property level would support the flood manager and
practitioner in making cost-effective, efficient flood management strategies and managing
their limited resources efficiently. This study is another step towards developing a set of
guidelines and standards that facilitate the selection of fit-for-purpose surveying strategies
to inform flood management decisions.
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27. Kopyść, P.T. The Use of Aerial Lidar and Structure from Motion (SFM) Photogrammetry Data in Analyzing Microtopographic
Changes on Hiking Trails on the Example of Kielce (Poland). Carpathian J. Earth Environ. Sci. 2020, 15, 461–470. [CrossRef]

28. Leitão, J.P.; de Sousa, L.M. Towards the Optimal Fusion of High-Resolution Digital Elevation Models for Detailed Urban Flood
Assessment. J. Hydrol. 2018, 561, 651–661. [CrossRef]

29. Leitão, J.P.; de Vitry, M.M.; Scheidegger, A.; Rieckermann, J. Assessing the Quality of Digital Elevation Models Obtained from
Mini Unmanned Aerial Vehicles for Overland Flow Modelling in Urban Areas. Hydrol. Earth Syst. Sci. 2016, 20, 1637–1653.
[CrossRef]

30. Annis, A.; Nardi, F.; Petroselli, A.; Apollonio, C.; Arcangeletti, E.; Tauro, F.; Belli, C.; Bianconi, R.; Grimaldi, S. UAV-DEMs for
Small-Scale Flood Hazard Mapping. Water 2020, 12, 1717. [CrossRef]

31. Hashemi-Beni, L.; Gebrehiwot, A.A. Flood Extent Mapping: An Integrated Method Using Deep Learning and Region Growing
Using UAV Optical Data. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2021, 14, 2127–2135. [CrossRef]

32. Hashemi-Beni, L.; Jones, J.; Thompson, G.; Johnson, C.; Gebrehiwot, A. Challenges and Opportunities for UAV-Based Digital
Elevation Model Generation for Flood-Risk Management: A Case of Princeville, North Carolina. Sensors 2018, 18, 3843. [CrossRef]

33. National LIDAR Programme-Data.Gov.Uk. Available online: https://www.data.gov.uk/dataset/f0db0249-f17b-4036-9e65-3091
48c97ce4/national-lidar-programme (accessed on 24 August 2022).

34. Nex, F.; Rinaudo, F. LiDAR or Photogrammetry? Integration Is the Answer. Ital. J. Remote Sens. 2011, 43, 107–121. [CrossRef]
35. Abily, M.; Duluc, C.-M. Photogrammetric and LiDAR Data for High Resolution Runoff Modeling over Industrial and Urban Sites.

In 2013 IAHR World Congress; Tsinghua University Press: Beijing, China, 2013.
36. Zawadzka, J.; Truckell, I.; Khouakhi, A.; Rivas Casado, M.; Alexakis, D. Detection of Flood Damage in Urban Residential Areas

Using Object-Oriented UAV Image Analysis Coupled with Tree-Based Classifiers. Remote Sens. 2021, 13, 3913. [CrossRef]
37. Wedajo, G.K. LiDAR DEM Data for Flood Mapping and Assessment; Opportunities and Challenges: A Review. J. Remote Sens.

GIS 2017, 06, 210. [CrossRef]
38. Trepekli, K.; Friborg, T.; Balstrøm, T.; Fog, B.; Allotey, A.; Kofie, R.Y.; Møller-Jensen, L. UAV-LiDAR Observations Increase the

Precision of Urban Flood Modelling in Accra by Detecting Critical Micro-Topographic Features. In Proceedings of the EGU
General Assembly 2021, online, 19–30 April 2021. [CrossRef]

http://doi.org/10.1016/j.pce.2010.12.011
http://doi.org/10.1002/hyp.5936
http://doi.org/10.1002/hyp.5648
http://doi.org/10.1111/jfr3.12246
http://doi.org/10.5194/ISPRS-ARCHIVES-XLII-2-W13-181-2019
http://doi.org/10.1002/hyp.7148
http://doi.org/10.5194/hess-25-2843-2021
http://doi.org/10.1002/hyp.7813
http://doi.org/10.1007/s12517-020-06318-2
http://doi.org/10.5194/hess-17-4015-2013
http://doi.org/10.3390/rs11050577
http://doi.org/10.1016/j.jhydrol.2021.126088
http://doi.org/10.2478/opar-2014-0003
http://doi.org/10.1155/2013/891534
http://doi.org/10.1007/s11069-020-03963-4
http://doi.org/10.1016/j.advwatres.2012.02.010
http://doi.org/10.1080/01431161.2020.1771788
http://doi.org/10.26471/cjees/2020/015/145
http://doi.org/10.1016/j.jhydrol.2018.04.043
http://doi.org/10.5194/hess-20-1637-2016
http://doi.org/10.3390/w12061717
http://doi.org/10.1109/JSTARS.2021.3051873
http://doi.org/10.3390/s18113843
https://www.data.gov.uk/dataset/f0db0249-f17b-4036-9e65-309148c97ce4/national-lidar-programme
https://www.data.gov.uk/dataset/f0db0249-f17b-4036-9e65-309148c97ce4/national-lidar-programme
http://doi.org/10.5721/ItJRS20114328
http://doi.org/10.3390/rs13193913
http://doi.org/10.4172/2469-4134.1000211
http://doi.org/10.5194/EGUSPHERE-EGU21-10457


Remote Sens. 2023, 15, 1912 20 of 20

39. Villanueva, J.R.E.; Martínez, L.I.; Montiel, J.I.P. DEM Generation from Fixed-Wing UAV Imaging and LiDAR-Derived Ground
Control Points for Flood Estimations. Sensors 2019, 19, 3205. [CrossRef]

40. Salmoral, G.; Casado, M.R.; Muthusamy, M.; Butler, D.; Menon, P.P.; Leinster, P. Guidelines for the Use of Unmanned Aerial
Systems in Flood Emergency Response. Water 2020, 12, 521. [CrossRef]

41. Office for National Statistics Population Estimates for the UK, England and Wales, Scotland and Northern Ireland. Available
online: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/
annualmidyearpopulationestimates/mid2020#local-area-population-change (accessed on 29 July 2021).

42. Population Statistics. Available online: http://citypopulation.de/en/uk/northwestengland/cumbria/E34004122__cockermouth/
(accessed on 4 November 2021).

43. Cumbria County Council. Cumbria Resilience A Review of Recovery Processes Following Storm Desmond’s Impacts on Cumbria (5 Th/6 Th
Dec 2015); Cumbria County Council: Carlisle, UK, 2018.

44. Casado, M.R.; Irvine, T.; Johnson, S.; Palma, M.; Leinster, P. The Use of Unmanned Aerial Vehicles to Estimate Direct Tangible
Losses to Residential Properties from Flood Events: A Case Study of Cockermouth Following the Desmond Storm. Remote Sens.
2018, 10, 1548. [CrossRef]

45. Cockermouth, Cumbria, United Kingdom Historical Weather Almanac. Available online: https://www.worldweatheronline.
com/cockermouth-weather-history/cumbria/gb.aspx (accessed on 5 November 2021).

46. Galaxy|Teledyne Geospatial. Available online: http://www.teledyneoptech.com/en/products/airborne-survey/galaxy/ (ac-
cessed on 1 April 2022).

47. Formulario Para Peticion de Mensajes Aeronauticos. Available online: https://ogimet.com/metars.phtml.en (accessed on 1 April 2022).
48. Chow, T.E.; Hodgson, M.E. Effects of Lidar Post-Spacing and DEM Resolution to Mean Slope Estimation. Int. J. Geogr. Inf. Sci.

2009, 23, 1277–1295. [CrossRef]
49. Höhle, J.; Höhle, M. Accuracy Assessment of Digital Elevation Models by Means of Robust Statistical Methods. ISPRS J.

Photogramm. Remote Sens. 2009, 64, 398–406. [CrossRef]
50. OS MasterMap®Topography Layer [FileGeoDatabase Geospatial Data], Scale 1:1250, Tiles: GB, Updated: 6 August 2020, Ordnance

Survey (GB), Using: EDINA Digimap Ordnance Survey Service. Available online: https://Digimap.Edina.Ac.Uk (accessed on 17
June 2021).

51. Feng, Y.; Xiao, Q.; Brenner, C.; Peche, A.; Yang, J.; Feuerhake, U.; Sester, M. Determination of Building Flood Risk Maps from
LiDAR Mobile Mapping Data. Comput. Environ. Urban Syst. 2022, 93, 101759. [CrossRef]

52. Chen, K.; Blong, R. Extracting Building Features from High Resolution Aerial Imagery for Natural Hazards Risk Assessment;
Extracting Building Features from High Resolution Aerial Imagery for Natural Hazards Risk Assessment. Int. Geosci. Remote Sens.
Symp. (IGARSS) 2002, 4, 2039–2041. [CrossRef]

53. Vacca, G.; Dessì, A.; Sacco, A. The Use of Nadir and Oblique UAV Images for Building Knowledge. ISPRS Int. J. Geo-Inf. 2017,
6, 393. [CrossRef]

54. Piech, I.; Ruzyczka, A. Generating of Building Facades Orthophotoplans with UAV and Terrestrial Photos. IOP Conf. Ser. Earth
Environ. Sci. 2019, 221, 012074. [CrossRef]

55. Sinagra, M.; Nasello, C.; Tucciarelli, T. Urban Flood Prediction through GIS-Based Dual-Coupled Hydraulic Models. Hydrology
2022, 9, 174. [CrossRef]

56. Shrestha, A.; Mascaro, G.; Garcia, M. Effects of Stormwater Infrastructure Data Completeness and Model Resolution on Urban
Flood Modeling. J. Hydrol. 2022, 607, 127498. [CrossRef]

57. 25 Year Environment Plan Annual Progress Report-April 2021 to March 2022; HH Associates Ltd.: London, UK, 2021; ISBN 978-1-
5286-3643-8.

58. DEFRA. Measuring Environmental Change: Outcome Indicator Framework for the 25 Year Environment Plan; DEFRA: London, UK, 2019.
59. Shen, D.; Wang, J.; Cheng, X.; Rui, Y.; Ye, S. Integration of 2-D Hydraulic Model and High-Resolution Lidar-Derived DEM for

Floodplain Flow Modeling. Hydrol. Earth Syst. Sci. 2015, 19, 3605–3616. [CrossRef]
60. Schumann, G.J.P.; Bates, P.D. Editorial: The Need for a High-Accuracy, Open-Access Global Digital Elevation Model. Front. Earth

Sci. 2020, 8, 544. [CrossRef]
61. Backes, D.J.; Teferle, F.N. Multiscale Integration of High-Resolution Spaceborne and Drone-Based Imagery for a High-Accuracy

Digital Elevation Model Over Tristan Da Cunha. Front. Earth Sci. 2020, 8, 319. [CrossRef]
62. Lama, G.F.C.; Errico, A.; Francalanci, S.; Solari, L.; Preti, F.; Chirico, G.B. Evaluation of Flow Resistance Models Based on Field

Experiments in a Partly Vegetated Reclamation Channel. Geosciences 2020, 10, 47. [CrossRef]
63. Comparison of Aerial Surveying with a Manned Aircraft or UAS for Mapping and 3D Modelling?|Geo-Matching.Com. Available

online: https://geo-matching.com/content/comparison-of-aerial-surveying-with-a-manned-aircraft-or-uas-for-mapping-and-
3d-modelling (accessed on 24 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/s19143205
http://doi.org/10.3390/w12020521
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/annualmidyearpopulationestimates/mid2020#local-area-population-change
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/annualmidyearpopulationestimates/mid2020#local-area-population-change
http://citypopulation.de/en/uk/northwestengland/cumbria/E34004122__cockermouth/
http://doi.org/10.3390/rs10101548
https://www.worldweatheronline.com/cockermouth-weather-history/cumbria/gb.aspx
https://www.worldweatheronline.com/cockermouth-weather-history/cumbria/gb.aspx
http://www.teledyneoptech.com/en/products/airborne-survey/galaxy/
https://ogimet.com/metars.phtml.en
http://doi.org/10.1080/13658810802344127
http://doi.org/10.1016/j.isprsjprs.2009.02.003
https://Digimap.Edina.Ac.Uk
http://doi.org/10.1016/j.compenvurbsys.2022.101759
http://doi.org/10.1109/IGARSS.2002.1026437
http://doi.org/10.3390/ijgi6120393
http://doi.org/10.1088/1755-1315/221/1/012074
http://doi.org/10.3390/hydrology9100174
http://doi.org/10.1016/j.jhydrol.2022.127498
http://doi.org/10.5194/hess-19-3605-2015
http://doi.org/10.3389/feart.2020.618194
http://doi.org/10.3389/feart.2020.00319
http://doi.org/10.3390/geosciences10020047
https://geo-matching.com/content/comparison-of-aerial-surveying-with-a-manned-aircraft-or-uas-for-mapping-and-3d-modelling
https://geo-matching.com/content/comparison-of-aerial-surveying-with-a-manned-aircraft-or-uas-for-mapping-and-3d-modelling

	Introduction 
	Materials and Methods 
	Study Area 
	Data Collection 
	UAS–RGB Data (Survey Strategy S1) 
	LiDAR Data (Survey Strategy S2) 
	RTK–GPS Data 

	Data Processing 
	Pixel Size Determination for S1 and S2 
	Difference in Elevation between S1 and S2 
	Validation 


	Results 
	Pixel Size Determination for S1 and S2 
	Difference in Elevation between S1 and S2 
	Validation 

	Discussion 
	Framework Development 
	Limitations and Future Work 

	Conclusions 
	References

