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AU : PleasenotethatPrimersshouldcontainanAbstractTeaser:Hence; an}AbstractTeaser}headinghasbeenaddedbeforethefirstparagraph:PleaseconfirmthattheincludedparagraphfortheAbstractTeaseriscorrect:
Our understanding of Alzheimer’s disease (AD) has evolved from
focusing solely on neurons to recognizing the role of glia. A recent
study in PLOS Biology revealed that oligodendrocytes are an impor-
tant source of Aβ that impairs neuronal function.

The amyloid hypothesis has served as a conceptual framework for Alzheimer’s disease (AD)

research, describing how amyloid peptides initiate a pathological cascade leading to neuro-

degeneration and dementia. Initially, this concept had a neuronAU : Pleasecheckandconfirmthattheeditto}Initially; thisconcepthadaneuron � centricview;whereneurons:::}didnotaltertheintendedmeaningofthesentence:-centric view, where neu-

rons were both the producers and victims of toxic amyloid aggregates. However, it has since

been significantly modified by integrating the cellular phases into the pathophysiological

cascade [1]. Genome-wide association studies in AD marked a turning point, expanding the

focus beyond the neuron-centric amyloid cascade hypothesis to include the contributions

of microglia. Yet, the roles of other glial cell types have been largely overlooked until

recently.

Two studies, one in PLOS Biology and the other in Nature Neuroscience, now highlight the

role of oligodendrocytes in the disease [2,3]. The starting point for both Rajani and colleaguesAU : Pleasenotethatallinstancesof }etal:}inthemaintexthavebeenchangedto}andcolleagues}; asperPLOSstyle:
[2] and Sasmita and colleagues [3] was the analysis of RNA sequencing datasets [4], which

revealed that oligodendrocytes express all essential genes required for Aβ production, includ-

ing APP, BACE1, and components of gamma secretase. Surprisingly, the levels of these genes

rank highest in oligodendrocytes compared to other cell types. Proteomic data from isolated

mouse brain cells confirmed that oligodendrocytes contain high levels of these proteins [5].

Further validation using RNAscope in situ hybridization on postmortem AD and control

brains showed that approximately 80% of oligodendrocytes express both APP and BACE1,

indicating their capability to produce Aβ.

These results align with a recently published study using freshly obtained human brain

biopsy samples, which detected an increase in a set of genes responsible for regulating Aβ pro-

duction not just in excitatory neurons but also in oligodendrocytes in the initial phases of AD

[6]. To determine the contribution of oligodendrocytes to amyloid plaque load, both Rajani

and colleagues [2] and Sasmita and colleagues [3] used an AD mouse model that expresses a

humanized/mutated APP gene under its native regulatory elements and identified oligoden-

drocytes as contributors to Aβ accumulation. Targeted deletion of β-secretase, BACE1, in
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oligodendrocytes led to a roughly 30% reduction in total amyloid plaque load, including the

soluble Aβ peptide fraction. This oligodendrocyte-derived contribution to Aβ was most signifi-

cant in regions with a high density of oligodendrocytes, such as the white matter, where they

accounted for up to about 50% of soluble Aβ peptides. However, both studies showed that

deleting BACE1 specifically in neurons nearly eliminated amyloid plaque formation, highlight-

ing the critical role of neurons and not oligodendrocytes in the generation of Aβ amyloid

plaques.

What role do Aβ peptides originating from oligodendrocytes play? Previous research has

identified a mechanism in Aβ-related neuronal dysfunction, characterized by impaired synap-

tic function that results in neuronal hyperactivity, creating a vicious cycle that worsens the dis-

ease over time [7]. Thus, Rajani and colleagues [2] investigated the impact of BACE1 knockout

in oligodendrocytes on neuronal dysfunction in vivo using high-density single-unit cortical

recordings. They demonstrate that oligodendrocyte-specific BACE1 knockout effectively

reversed the early abnormal neuronal hyperactivity observed in AppNL-G-F mice, which is

dependent on soluble Aβ. These results indicate that suppressing Aβ production specifically in

oligodendrocytes mitigates neuronal hyperactivity, raising the question about the underlying

mechanism. To explore this, Rajani and colleagues [2] differentiated oligodendrocytes from

human induced pluripotent stem cells (iPSCs) derived from both familial AD patients and

healthy controls to determine which forms of Aβ these cells generate. They found that these

oligodendrocytes produced Aβ with an elevated Aβ42/40 ratio, which exhibited a greater pro-

pensity to aggregate into oligomers and protofibrils compared to Aβ produced by neurons.

Injecting Aβ-rich media from human oligodendrocytes into mouse brains increased neuronal

firing, suggesting that oligodendrocyte-derived Aβ contributes to early AD-related neuronal

dysfunction. Thus, this study proposes the intriguing idea that the downstream effects of Aβ
may differ based on its cellular source, with Aβ derived from neurons primarily contributing

to amyloid buildup and Aβ from oligodendrocytes predominantly affecting neuronal hyperac-

tivity (Fig 1).

How can Aβ variants of varying lengths arise from distinct cell types? Previous research has

shown that membrane thickness and organization affect the production of different Aβ species

by γ-secretase [8]. Indeed, oligodendrocytes have a unique lipid composition characterized by

elevated levels of cholesterol, glycolipids, and phospholipids rich in long-chain and saturated

fatty acids [9]. This results in more densely packed and thicker membranes, potentially

explaining the higher Aβ42/40 ratio observed in these cells. If oligodendrocytes produce sub-

stantial amounts of Aβ42, one might expect amyloid plaques to form in the white matter

where these cells are predominantly located. However, amyloid plaques are much less frequent

in the white matter compared to the grey matter. This prompts an intriguing question which

specific cell types and states within the oligodendroglial lineage are responsible for generating

Aβ. The lineage comprises oligodendrocyte progenitor cells (OPCs), pre-myelinating oligo-

dendrocytes, and myelinating oligodendrocytes. In AD models, oligodendrocytes transition

into what are known as disease-associated states [10–13], and, in addition, OPC proliferation

increases, leading to their differentiation into premyelinating oligodendrocytes [14], which

exhibit high biosynthetic activity. Therefore, it would be intriguing to investigate whether

these AD-induced cell states, such as disease-associated oligodendrocytes and pre-myelinating

oligodendrocytes that accumulate in the grey matter, contribute to Aβ generation. In conclu-

sion, these 2 studies emphasize the involvement of oligodendrocytes in the advancement of

AD. Moving forward, it will be crucial to deepen our understanding of how oligodendrocytes

behave and function within the cellular phases of AD.
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