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Abstract

Microbial communities play key roles across diverse environments. Predicting their function

and dynamics is a key goal of microbial ecology, but detailed microscopic descriptions of

these systems can be prohibitively complex. One approach to deal with this complexity is to

resort to coarser representations. Several approaches have sought to identify useful group-

ings of microbial species in a data-driven way. Of these, recent work has claimed some

empirical success at de novo discovery of coarse representations predictive of a given func-

tion using methods as simple as a linear regression, against multiple groups of species or

even a single such group (the ensemble quotient optimization (EQO) approach). Modeling

community function as a linear combination of individual species’ contributions appears sim-

plistic. However, the task of identifying a predictive coarsening of an ecosystem is distinct

from the task of predicting the function well, and it is conceivable that the former could be

accomplished by a simpler methodology than the latter. Here, we use the resource competi-

tion framework to design a model where the “correct” grouping to be discovered is well-

defined, and use synthetic data to evaluate and compare three regression-based methods,

namely, two proposed previously and one we introduce. We find that regression-based

methods can recover the groupings even when the function is manifestly nonlinear; that

multi-group methods offer an advantage over a single-group EQO; and crucially, that sim-

pler (linear) methods can outperform more complex ones.

Author summary

Natural microbial communities are highly complex, making predictive modeling difficult.

One appealing approach is to make their description less detailed, rendering modeling

more tractable while hopefully still retaining some predictive power. The Tree of Life nat-

urally provides one possible method for building coarser descriptions (instead of
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thousands of strains, we could think about hundreds of species; or dozens of families).

However, it is known that useful descriptions need not be taxonomically coherent, as illus-

trated, for example, by the so-called functional guilds. This prompted the development of

computational methods seeking to propose candidate groupings in a data-driven manner.

In this computational study, we examine one class of such methods, recently proposed in

the microbial context. Quantitatively testing their performance can be difficult, as the

answer they “should” recover is often unknown. Here, we overcome this difficulty by test-

ing these methods on synthetic data from a model where the ground truth is known by

construction. Curiously, we demonstrate that simpler approaches, rather than suffering

from this simplicity, can in fact be more robust.

Introduction

Microbial communities play key roles in global climate [1–3], food safety [4–6], and human

health [7–10], but are highly complex [10–15]. To tackle this complexity, a key goal in ecology

has been to derive methods of coarsening, e.g., functional groups or guilds [16, 17]. Such coars-

ened representations can be more reproducible than the microscopic characterization while

still being predictive of properties of interest [17–23].

Over the years, multiple network-based algorithms for identifying biologically meaningful

groups of organisms have been proposed [24, 25]. However, such approaches typically require

extensive knowledge of species-species interactions, which is usually unavailable in microbial

communities with a large number of species. Recently, Shan et al. [26] demonstrated the

promise of a surprisingly simple methodology, ensemble quotient optimization (EQO), which

can identify a “functional group” with respect to a specified property of interest (which we will

call “function” for simplicity). For a continuous-valued function, the EQO algorithm is equiva-

lent to a Boolean least square regression seeking to identify a subset of species whose combined

abundance best correlates with the function while keeping the number of species in the group

as small as possible (see Materials and methods, EQO for details). Moran et al. [27] used an

approach that can be seen as a multi-group generalization of EQO. Compared to most modern

applications of machine learning, EQO requires very little data. Further, in contrast to other

methods of functional group identification, it only requires species abundances and the value

of the function as input. This simplicity makes EQO highly appealing for microbial applica-

tions where such data is comparatively easy to collect. However, its empirical success is some-

what puzzling, as it amounts to modeling ecological function with a simple linear regression.

Realizing the promise of such methodology, and improving on its performance, requires

understanding when and why EQO-like methods can succeed. Currently, validating the ability

of such methods to discover biologically or mechanistically meaningful groups remains an

open question. Of the three examples used in Shan et al. [26], only one (the data from [22])

had an independently established grouping against which the output could be compared (pre-

viously investigated in Ref. [28]). This issue is more general [24, 25, 29]. Empirical validation

of grouping methods often relies on researchers’ intuition, evaluating whether the groups

“make biological sense.” Such intuition-based validation can be compelling (e.g., Shan et al.
[26] found that, when applied to the TARA Oceans [19, 30] dataset with nitrate as the observ-

able of interest, EQO appropriately grouped aerobic and anaerobic ammonia oxidizers). How-

ever, to systematically compare or improve such methods, a quantitative assessment of their

performance is required. This requires a context with a known “ground truth,” against which

the algorithm output can be compared.
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Doing this in empirical datasets is difficult. Few empirical examples allow for the unambig-

uous delineation of the “true” functional groups [16, 29]; as a result, assessing the quality of a

grouping is often qualitative and subjective. Here, we circumvent this limitation by adopting a

model-based approach, evaluating algorithm performance on synthetic data from a model

where the correct answer is, by construction, unambiguous. Of course, extrapolating model-

based validation to applicability to real datasets requires caution. Such analysis can neverthe-

less provide useful insight in comparing algorithms and identifying their limitations. After all,

an algorithm that fails to perform in the “clean” world of a model is unlikely to succeed in real

life.

Specifically, we use a resource competition model with species catalyzing one of the steps of

a degradation pathway with a specified topology. We take one of the degradation products

(e.g. the final product) as the only quantity being measured (the “property of interest”). By

construction, our model defines a unique “correct” grouping of species, namely, the grouping

by reaction step performed. We use synthetic data from this model to compare the perfor-

mance of three grouping algorithms: the single-group EQO of Ref. [26]; its multi-group gener-

alization [27]; and a new algorithm we propose here, based on a Metropolis-like [31] search of

the space of candidate groupings of species.

We find that, first, these algorithms can recover the expected groupings even when the

function is manifestly nonlinear. Next, we show that multi-group methods can offer an

advantage over the single-group EQO and, under some conditions, can correctly recover

not only the group contributing to the function directly (in our model, the species produc-

ing the metabolite of interest), but also some information about the upstream groups whose

influence is indirect. Finally, we present results indicating that on limited-size datasets with

moderate measurement noise, simpler (linear) methods can outperform more complex

ones.

Results

A consumer-resource model and the three methods for identifying groups

To evaluate the regression-based methods in a simplest model setting, we adopt a chemostat

consumer-resource model with cross-feeding, where the metabolism is designed so that there

is an evident way to group species. The model includes S microbial species whose abundances

are denoted by nμ (μ = 1, . . ., S) and N metabolites whose concentrations are denoted by mi

(i = 1, . . ., N). These N metabolites are designed to form a linear degradation chain 1! 2!

� � � ! N. The linear pathway topology is a convenient place to start, since intuitively, it is one

where a linear-regression-like approach is most likely to succeed. More complex pathway

topologies, and various other ways to challenge the approach, will be discussed later. Species

are designed to catalyze at most one reaction of the chain, which naturally classifies them into

N groups (Fig 1A). Specifically, species in group i (i� N − 1) feed on metabolite i and transfer

a fraction wi of it into resource i + 1, while species in group N are not involved in the chain.

The concentration of the end product mN is taken as the function of interest. We termed the

last group in the chain (group N − 1) “the group of direct producers”.

Besides these N metabolites mi, we assume there are H other generalised depletable

resources for species to exploit, which create additional variability and competition; all

resources are assumed to be substitutable for simplicity [32–34]. The availability ha (a = 1, . . .,

H) of generalised resource a is assumed to be a monotonically decreasing function of the total

exploitation; for simplicity, we follow Ref. [23] and assume this dependence to take a simple

PLOS COMPUTATIONAL BIOLOGY Identifying microbial functional groups

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012590 November 13, 2024 3 / 17

https://doi.org/10.1371/journal.pcbi.1012590


hyperbolic form. Putting this together, the dynamics is described by the following equations:

dnm
dt
¼ nm

X

i

ð1 � wiÞtmimi þ
X

a

smaha � wm

" #

ð1aÞ

dm1

dt
¼ R1 � m1

X

m

tm;1nm � d1m1 ð1bÞ

dmi

dt
¼ wi� 1mi� 1

X

m

tm; i� 1nm � mi

X

m

tminm � dimi ðfor i > 1Þ ð1cÞ

ha ¼ ha fsnag; fnngð Þ ¼
ha

0

1þ
X

n

snann=Ka

:
ð1dÞ

Of the metabolites in the chain, only the first is supplied externally (at rate R1); for i> 1, the

only source of metabolite mi is secretion by species consuming metabolite mi−1. Thus, the

function (concentration of mN) is naturally nonlinear: producing the final product requires all

N − 1 groups to be present. The quantity wi is the transfer ratio of each reaction; di is the decay

rate of metabolite i. The generalized resources are described by parameters ha
0

(the highest ben-

efit the resource can provide) and Ka (the exploitation level at which this benefit is depleted by

half).

Fig 1. Using synthetic data to test group-searching algorithms in a context where the correct grouping of species is known and uniquely defined.

(A) We adopt a resource competition model with cross-feeding. The reaction network is assumed to form a linear degradation chain 1! 2! � � � ! N
with the end-product concentration (metaboliteN, orange) taken as the function of interest (shown withN = 3 as an example). Species can perform at

most one reaction of the linear chain, which naturally groups them intoN groups (N − 1 groups consuming metabolite 1, . . .,N − 1, and a group not

involved in the chain). The model also includesH other resources for species to compete over, which create additional variability (omitted for clarity,

see text). (B) The synthetic dataset is generated by repeatedly selecting a random subset of 15 species and allowing the community to equilibrate (see

Eqs 1a–1d). The final abundances and function (concentration of resourceN) are corrupted with Gaussian noise of relative strength � emulating

“measurement noise,” and the resulting values are recorded as a “sample” in the dataset. (C) We use the synthetic data as input for three families of

regression-based algorithms: the EQO of Ref. [26] (which groups species into two groups), and two families we call K-means and Metropolis (see text),

which can return any specified number of groups. The panel shows representative outputs of these algorithms forN = 3 metabolites and for the number

of groups indicated at the top. Species assigned to the same group are shown in the same color. Outputs are quantitatively scored (see text) based on the

similarity to the “ground-truth” grouping hard-coded into the model (left-most row). Higher score is better; a score of 1 corresponds to a perfect

matching.

https://doi.org/10.1371/journal.pcbi.1012590.g001
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A species μ is defined by its role in the metabolic chain (τμi 2 {0, 1} equals 1 if the species

can consume metabolite i and 0 otherwise), its utilization strategy of other generalized

resources (σμa 2 {0, 1} equals 1 if it can exploit resource a and 0 otherwise), and its mainte-

nance cost χμ. Here, we pick

wm ¼
X

i

ð1 � wiÞtmi þ
X

a

sma þ εxm; ð2Þ

where ε is a small quantity (taken to be 0.01 in this paper) and xμ is a Gaussian random num-

ber with mean zero and variance one. This choice follows the convention of Ref. [32], so that

species able to benefit from more resources also have a larger cost, and neither generalists nor

specialists are obviously favored. (At equilibirum, we expect mi� 1, ha� 1. Eq (2) sets the cost

χμ to approximately match the expected benefit, whatever the species’ strategy. As a result, the

winners and losers of the competition are determined by the luck of the draw of the small ran-

dom contribution xμ).
The model makes many simplifications (perfect conversion efficiency, substitutable

resources, ignoring Liebig’s law. . .) adopted for simplicity, following previous work [32–34] to

minimize the number of model parameters. However, for our purposes, two assumptions are

especially worth highlighting. The binary τμi correspond to species that are contributing to at

most one reaction of the chain (no promiscuity), making the grouping unambiguous. Within

each group, species differ in their utilization of the generalized resources, but the contributions

to the reaction of interest are assumed to be the same (no heterogeneity). The role of these two

assumptions will be examined shortly.

Species abundances determine the reaction fluxes and thus the value of the functional prop-

erty of interest mN (the concentration of metabolite N). With the model defined above, it can

be shown (see S1 Text Section 1) that at equilibrium,

mN ¼
R1

kN

w1T1

T1 þ d1

w2T2

T2 þ d2

� � �
wN� 1TN� 1

TN� 1 þ dN
; ð3Þ

where Ti = ∑μτμinμ is the total abundance of the functional group i 2 {1, . . ., N − 1}. Thus, the

individual species nμ affect the value of the function only via the combined group abundances

Ti, but the relationship between function and group abundances is manifestly nonlinear in this

model.

In this paper, we set the parameters as follows. The metabolite transfer ratios wi and the

decay rates di are the same for all i: wi� w = 0.5 and di� d = 1. The supply rate R1 is set to

R1 ¼
QN� 1

i¼1
w� 1
i ¼ w� ðN� 1Þ, compensating for the losses at each reaction to ensure that, if we

change N, the value of the function mN remains of the same order. Finally, the H generalized

resources are selected to be identical for simplicity, with ha
0
� h0 ¼ 3 and Ka� K = 1 for all a.

We generate the synthetic dataset by first generating a species pool (i.e., generating {σμa}
and {mμ}, see Materials and methods), and then repeatedly selecting a random subset of species

and allowing the community to equilibrate according to Eqs 1a–1d. The final species abun-

dances {nμ} and function mN are corrupted with Gaussian noise of relative strength � emu-

lating “measurement noise”, and the resulting values are recorded as a “sample” in the dataset

(Fig 1B).

We use the synthetic data as input for three families of regression-based algorithms (see

Materials and methods for details). The first is the EQO proposed by [26] which we modified

to incorporate the Akaike Information Criterion (AIC) into the optimization process. In the

second method, the coefficients of a multiple linear regression against all species are fed into

K-Means clustering for grouping [27]. We term this method “K-Means,” for simplicity. The
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third is a new algorithm we propose. In this approach, the root-mean-square-error (RMSE) of

a multiple linear regression against (candidate) group abundances takes the role of energy,

which we seek to minimize while searching the coarse-graining space with a Metropolis-like

[31] algorithm. We term this algorithm “Metropolis.” All three algorithms are linear-regres-

sion-based (but the third can be extended to include higher-order terms; we will return to this

point later). By design, EQO always outputs two groups (‘functional’ and ‘non-functional’ spe-

cies); in contrast, K-Means and Metropolis can return any specified number of groups. Repre-

sentative examples of the output groupings of each algorithm (with the ground truth

containing N = 3 groups) are shown in Fig 1C.

To evaluate the quality of such groupings, we use a metric based on Jaccard Similarity.

First, we define the “recovery quality” of a group in the ground truth as the Jaccard Similarity

between this group and its best match in the grouping being evaluated. Then, the overall qual-

ity score of a grouping is defined as the average recovery quality of all the ground-truth groups

(see S1 Text Section 2 for details). By construction, this score is between 0 and 1, where 1 indi-

cates perfect matching. Perfect matching can only be expected when the number of groups in

output (k) equals the number of groups in the ground truth (N). If k< N, then the highest pos-

sible score is k/N, which we call the performance ceiling of a k-group output for k� N (see S1

Text Section 2). The quality scores for each of the example groupings in Fig 1C are shown

below them.

Linear-regression-based algorithms perform well, with multi-group

algorithms recovering more information

We begin by evaluating the three algorithms on synthetic datasets with N = 3 true groups of 16

species each, for a total of S = 48 species (groups 1 & 2 successively degrade metabolite 1 into

metabolite 3, while group 3 is “nonfunctional”). For our first test, we consider the most favor-

able regime with a large number (900) of samples and low noise (10%). We follow the protocol

of Fig 1 to test each of the algorithms on 50 synthetic datasets. The quality scores of all the 2-

and 3-group outputs are summarized in Fig 2A and 2B. (The groupings themselves are shown

in S4 Fig).

For 2-group outputs (Fig 2A), all three algorithms perform substantially better than ran-

dom, with K-Means and Metropolis approaching the performance ceiling of 2-group group-

ings (k/N = 2/3, dashed line). As one might expect, in most cases, the groupings identified by

the 2-group algorithms distinguish direct producers from the rest of the species (see S4 Fig).

Note that while EQO groups species into two groups, it assumes that only one of them (the

“functional group”) affects the level of function. However, the “nonfunctional group” may also

affect function through competition with functional species. This may help explain the com-

paratively low performance score of this algorithm: for our synthetic data, removing this

restriction improves performance (see S1 Text Section 3).

For 3-group outputs, both multi-group algorithms cross the performance ceiling of 2-group

methods (Fig 2B). Examining the output reveals that this is due to resolving not only the group

of direct producers, but also (at least some of) the species that contribute to an upstream reac-

tion (group 1); see S4 Fig. Thus, we confirm that multi-group algorithms can recover more

information on the community structure.

The analysis just described was performed for a particular dataset size and noise magnitude.

The effect of these parameters is presented in Fig 2C, which shows the average score (over 50

synthetic datasets) of the 3-group Metropolis. As expected, the difficulty of the task increases if

the dataset is small and/or noisy. One also expects the method to perform less well if the gener-

alized resources are made to have a larger impact on species growth rates; see S1 Text Section
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3. Here and below, we focus on the Metropolis algorithm for clarity of presentation, as it

appears to perform best, at least on the synthetic data used here. The scores for 2-group out-

puts and for the other two algorithms behave similarly, and are presented in S5 Fig.

To further challenge the algorithms to detect their limitation, we tweak the model in two

ways, relaxing some of the assumptions to make the ground truth grouping less clear. First, we

allow species in the same group to vary in their contribution to the respective degradation

reaction. Specifically, instead of setting all non-zero terms of τμi to be the same, we draw them

from a distribution with width στ; we call this intra-group heterogeneity. Second, we consider

species that are increasingly promiscuous rather than specializing in a single reaction step (in

other words, we let them have a small rate ξ for reaction(s) not belonging to its group); we call

this inter-group promiscuity. The details are described in Materials and methods. Fig 2D pres-

ents the heatmap of Metropolis performance as a function of the heterogeneity and promiscu-

ity parameters (see also S6 Fig). We see that the algorithm can tolerate some deviations in

either direction; however, for high heterogeneity or promiscuity when the group identity

becomes increasingly fuzzy, performance begins to fall and approaches the score of a random

grouping.

Groups affecting the function more directly are easier to recover

The overall quality score defined above and analyzed in Fig 2 is a summary statistic averaged

over all the groups in the output. However, some groups may be recovered better than others.

To characterize this, we now increase the length of the degradation chain and focus on the

recovery quality of individual groups, measured by the Jaccard Similarity between a given true

group and its closest match in the algorithm output. To make the results otherwise comparable

as we increase the length of the chain, the total number of species is kept as similar as possible

under the constraint that each group contains the same number of species (see Materials and

methods for details). Throughout this analysis, the dataset size is held steady at 900 samples

and the noise magnitude is kept at 10%.

Fig 2. Linear-regression-based algorithms succeed at identifying the correct functional groups in synthetic data, and multi-group algorithms

recover more information. (A), (B) Algorithm performance, evaluated over 50 simulated datasets generated as described in Fig 1 withN = 3 true

groups, 900 samples and 10% simulated measurement noise. Performance scores (i.e., the similarity of result to the 3-group ground truth) are shown as

box plots, separately for the 2-group outputs of all three algorithms (A) and for the 3-group outputs of the K-Means and Metropolis methods (B).

Performance scores of random groupings are shown as controls. Boxes represent the interquartile range (IQR) between the first and third quartiles; the

line inside represents the median. Whiskers show the lowest and highest values within 1.5 × IQR from the first and third quartiles, respectively. Points

that fall outside of the range of the whiskers (the outliers) are shown explicitly. Stars mark the mean values. The dashed horizontal line is the theoretical

performance ceiling of any 2-group grouping when evaluated against the 3-group ground truth (compare to Fig 1C); 3-group methods can cross this

bound. All three algorithms perform substantially better than random, with Metropolis scoring the highest. (C) Heatmap shows the performance of the

3-group Metropolis as a function of the measurement noise magnitude and the number of samples in the dataset. (D) Heatmap of the performance of

the 3-group Metropolis under increasing intra-group heterogeneity (στ) and inter-group promiscuity (ξ) of species, to show the limitation of linear-

regression-based algorithms under fuzzy ground truth groupings. In (C) and (D), each pixel is an average over 50 synthetic datasets. The star indicates

the parameters used in (A) and (B).

https://doi.org/10.1371/journal.pcbi.1012590.g002
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Fig 3A shows the recovery quality of each of the groups in a degradation chain of length

N = 4, as identified by the Metropolis algorithm for various k. Similarly to the results of the

previous section, at k = 2 (two-group output), the group of direct producers is the only group

recovered. Increasing k makes it possible to resolve other groups, but the recovery quality

drops as groups get further away in the chain.

To further illustrate this point, Fig 3B compares the recovery quality of direct producers

(group N − 1) and the most distant upstream group (group 1), as a function of the length of

the chain. (Note that identifying the most distant group requires using k = N, while the direct

producers are best identified by setting k = 2; see Fig 3A). We see that as the chain becomes

longer, the ability to recover the most distant group drops quickly, whereas the direct produc-

ers are adequately recovered (in this example) up to length 5. These results quantitatively con-

firm the intuition that groups of species affecting the function more directly are easier to

recover, while further illustrating the ability of multi-group algorithms to recover more infor-

mation on community structure.

While the ability to recover upstream groups is remarkable, we hypothesized that it is facili-

tated by our choice of a particularly simple (linear) topology of the degradation pathway. To

Fig 3. Identifying the groups becomes harder when the degradation chain is long, especially for groups catalyzing upstream reactions. (A) The

panel shows the ability of the Metropolis algorithm to recover the true functional groups within a linear degradation chain with N = 4 metabolites. The

recovery quality of a group is defined as the Jaccard Similarity between the true functional group and its closest match in the algorithm output. Here,

the recovery qualities of each of the true functional groups (groups 1, 2, and 3) are shown as a function of k, the number of groups requested from the

algorithm. Recovery qualities attained by random k-group groupings are shown as controls (black line with triangle markers). As the number of groups

k in the output increases, the algorithm first finds group 3 (direct producers), then group 2 and group 1, with ever-decreasing recovery quality. (B) The

recovery quality of Metropolis of the most upstream group (group 1, blue dashed line) and the direct producers (group N − 1, red solid line) in the N-

metabolites degradation chain, shown as a function of N. Recovery quality of group 1 is reported forN-group algorithm outputs while that of direct

producers is for 2-group outputs (see text.) As controls, the recovery qualities (of arbitrary group) by N-group and 2-group random groupings are

shown as black dashed line and black solid line, respectively. As the chain becomes longer, the ability to recover the most upstream group drops quickly,

whereas the direct producers are adequately recovered up to length 5. In both panels, shading indicates the standard error of the mean over 50 synthetic

datasets, circles indicate data points for Metropolis while triangles for random groupings.

https://doi.org/10.1371/journal.pcbi.1012590.g003

PLOS COMPUTATIONAL BIOLOGY Identifying microbial functional groups

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012590 November 13, 2024 8 / 17

https://doi.org/10.1371/journal.pcbi.1012590.g003
https://doi.org/10.1371/journal.pcbi.1012590


test this, we considered several other reaction topologies, as well as other choices for the quan-

tity of interest beyond the case of the end-product metabolite of a linear degradation chain.

Specifically, we let the function be an intermediate product of a linear degradation chain; one

of the end products in a degradation chain with a branch; or the common end product of two

linear chains. This analysis is presented in the S1 Text Section 4. In the first two cases, Metrop-

olis can again identify all the functional groups, while in the last, it can only recover the groups

which directly produce the metabolite of interest. In summary, our analysis confirms that for a

function associated with multiple groups, the group which affects (correlates with) the func-

tion the most will in general be easiest—and sometimes the only one—to be found.

Finding the right variables can be easier than finding the right model

Given the promising performance of linear-regression-based algorithms, it is natural to ask

whether algorithms based on more complex models could do better. Of note, our Metropolis

algorithm can be generalized to any model of community function that can accept the com-

bined group abundances as input, and return the RMSE of the prediction. Thus, the Metropo-

lis algorithm can be used to test different models under the same framework. Here we

consider a generalization to a regression with both linear and quadratic terms, which we term

the ‘quadratic Metropolis.’ To emphasize this difference, the original version considered above

will from now on be referred to as ‘linear Metropolis.’

To compare these two versions, we evaluate them on the same synthetic datasets with N = 3

true groups as in Fig 2. Before comparing their performance, we note that, by construction,

each algorithm constructs two objects. First, it returns a set of coarsened variables—i.e., the

groups. Second, it also identifies a predictive model that uses these variables to predict the

function (see Eqs (4a) and (4b) in Materials and methods)—in our case, the specific instance

of the linear or quadratic regression model. When comparing the performance of the linear

and quadratic versions of the algorithm, it is important to be clear that in this work, our pri-

mary focus is on identifying the variables. In contrast, the prediction error of the model is only

a means to an end: we assume, or hope, that the regression model trained on the correct vari-

ables will have a lower RMSE than a model trained on the wrong variables.

Intuitively, the quadratic model should predict the function better since it has more param-

eters, and the true structure-function mapping (Eq (3)) is nonlinear. This is indeed the case, as

demonstrated in Fig 4A which shows the difference in out-of-sample R2 (Eq (5), linear minus

quadratic, averaged over 100 datasets) as a function of the number of samples and noise mag-

nitude. (See Materials and methods for details). In some of the parameter range, the quadratic

model has higher predictive power. Crucially, however, finding the right variables is distinct

from finding the right model. The heatmap in Fig 4B uses the same data as panel A, but plots

the difference of grouping quality scores identified by the two algorithms. Putting these two

panels together, we distinguish three regimes, as indicated by dashed lines. In the first regime

(many samples, low noise), the quadratic model is better at both predicting the function and

detecting groups. In the second, the linear version is better at identifying variables, even

though the quadratic is better at predicting the function. In this regime, the higher expressivity

of the more complex model appears to hinder the algorithm’s ability to correctly identify the

variables. Finally, in the third (and arguably the most relevant) regime of few samples and high

noise, the quadratic version, somewhat surprisingly, performs worse at both tasks. This is

because at some point, the failure to identify the variables also limits its ability to predict the

function. (Of course, one caveat is that in this region of parameter space, the task is especially

hard: even for the better-performing linear method, the absolute quality of group prediction

remains relatively poor; see Fig 2C).
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In conclusion, we find that for small or noisy datasets, the task of identifying a predictive

coarsening of an ecosystem (“finding the right variables”) can be easier than the task of pre-

dicting the function well (“finding the right model”), in the precise sense that—at least in the

example considered here—it is best accomplished by a simpler method.

Discussion

In this work, we examined the ability of several simple algorithms to recover meaningful

“functional groups” of microbial taxa using only the information on species abundances and a

single function of interest across a collection of samples. For this, we used synthetic data gener-

ated from a model for which the most sensible grouping could be defined unambiguously.

This allowed us to quantitatively assess an algorithm’s performance by comparing its output

against the expected “ground truth”. We found that, first, simple regression-based methods

could indeed correctly recover a substantial amount of information about the underlying com-

munity structure, at least in the simplest scenarios considered in our model. Second, we

showed that multi-group algorithms can offer an advantage over the two-group EQO pro-

posed previously. Finally, and most importantly, our analysis indicates that under some condi-

tions, particularly for datasets that are small and/or noisy, simpler (linear) methods can

outperform more complex ones.

Fig 4. If datasets are small and/or noisy, linear-regression-based algorithms for identifying functional groups outperform more complex

versions. We compare the performance of the linear-regression-based Metropolis algorithm to a more expressive version that includes quadratic terms.

Both versions are evaluated on the same synthetic datasets with a 3-group ground truth. Each algorithm return a set of coarsened variables (a grouping

of species into three groups) and a model that uses these variables to predict the function. (A) The model identified by the quadratic Metropolis is often

more predictive of the function (blue). The heatmap shows the difference in out-of-sample coefficient of determination (R2). More specifically, we plot

the R2 of the best linear model minus the R2 of the best quadratic, where “best” refers to the model identified by the corresponding Metropolis

algorithm over its finite runtime (10000 steps). (B) Nevertheless, even when the linear algorithm loses in R2, the grouping it identifies can be a better

representation of the underlying ground truth. The heatmap shows the difference in the quality score of the grouping (linear minus quadratic). The

panels highlight that the task of identifying a predictive coarsening of an ecosystem (B) is distinct from the task of predicting the function well (A), and

for small or noisy datasets, the former is best accomplished by a simpler method. Each pixel is an average over 50 datasets. Dashed lines mark the

boundaries between the three regimes discussed in the main text.

https://doi.org/10.1371/journal.pcbi.1012590.g004
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Our minimal model included many simplifications, and considered only the simplest reac-

tion topologies. Even in these favorable cases, we have seen that realistic details, such as inho-

mogeneity of species contributions to function, reduce performance. Other complications

could degrade performance further; for example, the method is unlikely to succeed for func-

tions with non-monotonic dependence on group abundances, or instances when individual

species’ contributions are strongly context-dependent.

Of the three algorithms evaluated here, the newly proposed Metropolis algorithm per-

formed best. However, it is clear that the findings of a model-based evaluation such as ours

should be interpreted with caution. Whether the Metropolis-based algorithm would retain this

relative advantage in real-world applications remains to be established.

Materials and methods

Linear-regression-based algorithms

In this work, we test three linear-regression-based algorithms, termed “EQO,” “K-Means,” and

“Metropolis.” For all three algorithms, the input is an abundance table (matrix) Aaμ and a col-

umn vector Ya of the values of the functional property in each sample (here and below, row

index a labels samples, column index μ labels species). The output is a grouping of species into

k groups for one or several k. This section presents the technical details of these algorithms.

The algorithm for generating random k-group groupings with given k, which serves as control,

is also presented here.

EQO. The EQO algorithm was proposed by Ref. [26]. For a continuous function, this

algorithm is equivalent to a Boolean least square regression which selects from the community

a subset of species (the “functional group”) whose combined abundance correlates with the

function of interest [26]. As such, it constructs a 2-group grouping of species: those included

in the functional group, and those that are not.

Each candidate grouping can be represented by a column Boolean vector~x � fxmg of

length S (the total number of species), where the species included / not included in the func-

tional group are encoded by setting xμ = 1 and xμ = 0, respectively. The EQO algorithm exe-

cutes a search in the space of such Boolean vectors. For a given candidate~x, we first calculate

the abundance of the functional group (in each sample) fa = ∑μ Aaμxμ, then perform a 1-dimen-

sional linear regression (with an intercept), with Ya as response and fa as predictors. We then

calculate the Akaike Information Criterion (AIC) of this regression as AIC = 2κ + n log(RSS/

n), where κ is the size of the functional group (the number of nonzero components in~x) and n
is the number of samples. RSS is the residual sum of squares of the regression. Thus, with Aaμ
and Ya given, AIC is a function of~x. We use the MATLAB built-in function ga to find the

optimal~x which minimizes the function AICð~xÞ using a genetic algorithm. We set the options

of ga as follows: FunctionTolerance=1e-9, MaxStallGenerations=500,
MaxGenerations=10000 and PopulationSize=100.

Of note, this implementation is slightly different from the protocol of Ref. [26], where RSS

is first minimized for a range of (fixed) κ values, after which the AIC is calculated and the low-

est value is selected. For our application, we found that the constraint of holding κ fixed slows

down optimization significantly, so we chose to combine the two successive steps into a single

optimization process.

Note that although EQO groups species into two groups, only one of them is assumed to

affect the function. To explore the effect of this assumption, for our testing we also considered

a variant of EQO where this constraint is relaxed (EQO-2g; see S1 Text Section 3). For our syn-

thetic data, we found that removing this restriction improves performance.
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K-Means. In this method, one first performs an S-dimensional linear regression (with

intercept), using the function Ya as response and the abundances of each species Aaμ as predic-

tors. Then the coefficients of all species are fed into the K-Means clustering algorithm (per-

formed by the MATLAB built-in function kmeans) which groups the coefficients (and thus

species) into k groups for the specified k< S. This heuristic approach is very naive, to the

point that it is rather surprising it can be as successful as it is (cf. Fig 2). When it does succeed,

it offers the advantage of being incomparably faster than either of the other methods.

Metropolis. The aim of this algorithm is to find a set of kmax optimal groupings P∗ ¼

fP∗
1
;P∗

2
; . . . ;P∗

kmax
g where P∗

k is the optimal k-group grouping which gives the lowest RMSE

through a linear regression. The approach, briefly, is to keep in memory a list of best current

candidates P and the associated RMS error values E ¼ fEkg. We then perform M steps trying

new groupings (by splitting or merging groups of the groupings already in P), updating the

list as better groupings are found, and then assume the candidates are good enough, setting

P∗ ¼ P.

More specifically, the algorithm proceeds as follows:

1. Initialization. The list of candidates P ¼ fP1;P2; . . . ;Pkmax
g is initialized by randomly

generating a series of k-group groupings Pk (see Section “Random grouping” below). For

each Pk, we then calculate the combined abundance of each group and perform a k-dimen-

sional linear regression (with intercept) with function Ya as response and group abun-

dances as predictors. The RMSE of this regression is recorded as Ek.

2. Main loop

a. Construct a new candidate: Randomly choose one of the groupings Pk from the current

list P. If 1< k< kmax, randomly split one of the groups in Pk into two (with probability

p = 0.5), or randomly merge two groups into one (with probability 1 − p), thus obtaining

a new grouping Pk0 with a different number of groups k0 6¼ k. If k = 1 or k = kmax, only

one of these operations is possible (respectively, only splitting or only merging), and is

performed with probability 1.

b. Evaluate the new candidate: Calculate the combined abundance of each group in the

new grouping Pk0; perform a k0-dimensional linear regression (with intercept) with func-

tion Ya as response and group abundances as predictors; and record its RMSE as Ek0.

c. Update the P list: Compare Ek0 to Ek0 (the RMSE of the k0-group grouping Pk0 currently

stored in P). With probability minfexpð� bðEk0 � Ek0 ÞÞ; 1g, replace the currently stored

grouping with Pk0.

3. Repeat the main loop M = 10000 times, then return the current list of candidate groupings

P as the best guess of the optimal list P∗
.

In practice, we found β =1 to perform best, so we set β =1 for all the tests in this paper.

This “zero-temperature” regime is usually undesirable, as it can cause optimization to become

stuck in a local optimum. However, for our application, we have not observed this to occur:

our approach of storing the list of candidate groupings for all k always maintained a large

number of accessible moves.

Empirically, we found that a sufficiently large kmax is required for a good performance, even

if we are ultimately only interested in output groupings with small k. Throughout our analysis,

we set kmax = 20. With this kmax, β =1 was always found to perform best in our testing.

For the quadratic Metropolis introduced in Fig 4, we replace the linear regression with a

regression with both linear terms and quadratic terms (which includes both T2
i terms and the
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TiTj cross-product terms, with Ti the combined abundance of group i), as well as an intercept

like before. Everything else is identical for both versions. Note that the number of coefficients

in this regression model is quadratic in k (the number of groups), not S (the number of spe-

cies). Thus, for all the figures shown, the model coefficients were well-constrained even with

the lowest dataset size assayed (100 samples).

Random grouping. We generate a random k-group grouping of all S species as follows.

First, randomly permute the S species (represented by S integers from 1 to S). If we think of

this reordered set as a list of integers, with S − 1 “gaps” between them, then selecting a random

partitioning into k non-empty groups is equivalent to randomly selecting k − 1 of these “gaps”

as the locations of group boundaries.

Simulation details

To generate the datasets, we first generate a pool of S species, which means randomly generat-

ing the matrix {σμa} as a sparse binary matrix with density 0.3 (i.e., each entry σμa is indepen-

dently set to 1 with probability 0.3, and 0 otherwise) and generating the maintenance cost χμ of

each species according to Eq 2. The number of generalised resources H is set to be 15 except in

panel D of S2 Fig, where it is set to 30. The total number of species S is set to 48, with each

group containing S/N species. The one exception is the N = 5 case of Fig 3: since 48 is not divis-

ible by 5, we instead set S = 50 (so each group contains 10 species). Other parameters have

been stated in the main text.

For a dataset consisting of n samples, for each sample we randomly select 15 out of all S spe-

cies, whose initial abundances are set to 1 (while those of the remaining species are set to 0).

The initial values of all mi’s are set to 1. We use the MATLAB built-in function ode45 to sim-

ulate Eq (1) to approximate equilibrium. We then record the final abundances of all species nμ
and the concentration of the functional molecule mN. We repeat this procedure n times to

obtain n samples. We then multiply each element of the abundance table and function by an i.

i.d. random variable drawn from a normal distribution with mean 1 and width �. Negative val-

ues are set to 0. The magnitude to � tunes the strength of measurement noise.

Intra-group heterogeneity and inter-group promiscuity

Here we describe the operation details of analysis in Fig 2D. As mentioned in the main text,

originally the degradation rate τμi equals 0 or 1 with each species degrading at most one metab-

olite of the chain. We first add inter-group reaction promiscuity by replacing each zero τμi for i
� N − 1 (the last metabolite cannot be degraded) with a small value ξ so that each species is

endowed with a small catalytic activity for all reactions, not just the one defining its group

identity. We let ξ take a series of values from 0 to 0.3 to model different degrees of promiscuity.

We then add species heterogeneity within a group as follows: for each species we draw an i.i.d.

random number ημ from lognormal distribution with parameter μτ = ln 1 fixed and στ varying

from 0 to 0.3 to model gradually increasing heterogeneity. We then scale all reaction rates τμi
of a given species μ by ημ as a global factor. This rescaling can be understood as the uncertainty

in counting abundances in practice (e.g., due to the species carrying a different number of cop-

ies of the 16S RNA).

Comparison of abilities to predict function of linear and quadratic

Metropolis

Here we describe the detailed protocol of the comparison of abilities to predict function of lin-

ear and quadratic Metropolis shown in Fig 4A. As mentioned in the main text, besides the

groups (variables) these versions of Metropolis also identify two models for predicting the
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function:

Ŷ L ¼ bL þ
X

i

cLi Ti; ð4aÞ

Ŷ Q ¼ bQ þ
X

i

cQi Ti þ
X

i;j

dQij TiTj; ð4bÞ

where Ti is the combined abundance of group i, and Ŷ L and Ŷ Q are the function predicted by

linear and quadratic model, respectively. The two models are uniquely determined by their

regression coefficients, fbL; cLi g for linear model and fbQ; cQi ; d
Q
ij g for quadratic model. In Fig

4A we are comparing the predictive power of these two models.

To do so, for each generated pool of species (see Simulation details), we now generate 2

datasets consisting of the same number of samples. One of them is used as the training set,

while the other one is set aside as the testing set. The training set is fed into the two versions of

Metropolis, which are now required to output not only the optimal groupings they find, but

also the coefficients of the corresponding models (Eqs 4a & 4c) trained on the training set.

(Specifically for Fig 4, we only ask for the 3-group grouping and its regression coefficients).

We then test their abilities to predict the function in the testing set. The out-of-sample R2 is

calculated as

R2
out� of � sample ¼ 1 �

X

a

ðYa � Ŷ aÞ
2

X

a

ðYa �
�Y Þ2

; ð5Þ

where Ŷ a is the predicted value of function (for sample a), Ya is the true value, and �Y ¼

1

N

P

a
Ya is the average of Ya. The differences of out-of-sample R2 of the two versions of Metrop-

olis (linear minus quadratic) are shown in Fig 4A.

Supporting information

S1 File. Simulation Scripts And Data. MATLAB simulation code and scripts generating Figs

2–4 and S2–S6 Figs from scratch, as well as data used for these figures shown in the current

manuscript.

(ZIP)

S1 Text. Supplementary information text. Details of the model, derivation of the recovery

quality performance ceiling, a two-group generalization of the EQO algorithm, and algorithm

performance in other model ecological scenarios.

(PDF)

S1 Fig. Example 2-group, 3-group and 4-group groupings under a 3-group ground truth

with their scores shown on the right.

(TIF)

S2 Fig. Effect of “nonfunctional group” on function. We consider the model in main text

with N = 2. (A) The value of function (the final metabolite) shown against the abundance of

the nonfunctional group (species not involved in producing this metabolite) for an example

dataset of 900 samples. The scatter plot shows a negative correlation. The red line is the least-

squares line and r marks the Pearson correlation. (B) The coefficients of all species of a S–

dimensional regression of function against all S species, for the same dataset as in (A). Error
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bars indicate 95% confidence intervals for the coefficient estimates. The x axis is ordered so

that species 1–24 belong to the functional group (red) and species 25–48 belong to the non-

functional group (blue). We see that most nonfunctional species have negative regression coef-

ficients. (C) The grouping scores for the outputs of EQO, EQO-2g, K-Means and Metropolis

algorithms over 50 simulated datasets (see S1 Text Section 3 for EQO-2g), shown as box plot

with markers the same as Fig 2A and 2B. EQO-2g performs as well as Metropolis. Random

groupings are included as controls. (D) Same as (C), with the competition strength tuned

down by doubling the number of general resources. The performance of EQO is improved

and comparable to other algorithms, as expected.

(TIF)

S3 Fig. Metropolis is able to identify groups associated with functions other than end prod-

uct of linear digradation chain. The recovery quantity of each functional group as function of

number of groups in output (k) for function to be (A) intermediate product of linear degrada-

tion chain; (B) one of the end product in a degradation chain with a branch; (C) common end

product of 2 linear degradation chain. Groups are indicated in the pictogram of each panel.

Numbers in the pictogram of (C) indicate the transfer ratio wr of each reaction. In the first two

cases (A & B), Metropolis can identify all the functional groups. While in the last, it can only

recover the group of direct producers.

(TIF)

S4 Fig. Output groupings of the 3 algorithms for a linear degradation chain of N = 3

metabolites. The output groupings of EQO, 2-group and 3-group K-means and Metropolis, as

correspond to Fig 2A and 2B in the main text. Species 1–16 belong to group 1, 17–32 belong to

group 2 (direct producers), 33–48 belong to group 3 (nonfunctional species).

(TIF)

S5 Fig. Heat maps of mean scores over 50 datasets of the algorithms as a function of rela-

tive noise and number of samples.

(TIF)

S6 Fig. Recovery qualities of individual groups under increasing intra-group heterogeneity

and inter-group promiscuity of species. As an extension of the Fig 2D analysis in the main

text, we look into the per-group recovery quality (defined in S1 Text Section 2) of the 3-group

Metropolis, for the scenario of a linear degradation chain of N = 3 metabolites. (A) The recov-

ery quality of the upstream group 1 and the direct producers group 2 shown as a function of

intra-group heterogeneity (no promiscuity). (B) Same, as a function of inter-group promiscu-

ity (no heterogeneity). Black dashed line is the random-group control (average quality of a

3-group random grouping).

(TIF)
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28. Estrela S, Vila JCC, Lu N, Bajić D, Rebolleda-Gómez M, Chang CY, et al. Functional attractors in micro-

bial community assembly. Cell Syst. 2022; 13(1):29–42.e7. https://doi.org/10.1016/j.cels.2021.09.011

PMID: 34653368

29. Simberloff D, Dayan T. The Guild Concept and the Structure of Ecological Communities. Annual Review

of Ecology and Systematics. 1991; 22(1):115–143. https://doi.org/10.1146/annurev.es.22.110191.

000555

30. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of

the global ocean microbiome. Science. 2015; 348(6237):1261359.

31. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of State Calculations by

Fast Computing Machines. The Journal of Chemical Physics. 1953; 21(6):1087–1092. https://doi.org/

10.1063/1.1699114

32. Tikhonov M, Monasson R. Collective Phase in Resource Competition in a Highly Diverse Ecosystem.

Physical Review Letters. 2017; 118(4). https://doi.org/10.1103/PhysRevLett.118.048103

33. Good BH, Martis S, Hallatschek O. Adaptation limits ecological diversification and promotes ecological

tinkering during the competition for substitutable resources. Proc Natl Acad Sci U S A. 2018; 115(44):

E10407–E10416. https://doi.org/10.1073/pnas.1807530115 PMID: 30322918

34. Marsland R 3rd, Cui W, Mehta P. A minimal model for microbial biodiversity can reproduce experimen-

tally observed ecological patterns. Sci Rep. 2020; 10(1):3308. https://doi.org/10.1038/s41598-020-

60130-2 PMID: 32094388

PLOS COMPUTATIONAL BIOLOGY Identifying microbial functional groups

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012590 November 13, 2024 17 / 17

https://doi.org/10.1038/s41559-018-0519-1
https://doi.org/10.1038/s41559-018-0519-1
http://www.ncbi.nlm.nih.gov/pubmed/29662222
https://doi.org/10.1038/s41559-016-0015
http://www.ncbi.nlm.nih.gov/pubmed/28812567
https://doi.org/10.1126/science.aaf4507
http://www.ncbi.nlm.nih.gov/pubmed/27634532
https://doi.org/10.1073/pnas.1601070113
http://www.ncbi.nlm.nih.gov/pubmed/27432978
https://doi.org/10.1073/pnas.1101591108
https://doi.org/10.1073/pnas.1101591108
http://www.ncbi.nlm.nih.gov/pubmed/21825123
https://doi.org/10.1126/science.aat1168
https://doi.org/10.1126/science.aat1168
http://www.ncbi.nlm.nih.gov/pubmed/30072533
https://doi.org/10.1103/PhysRevX.12.021038
https://doi.org/10.1111/j.1461-0248.2009.01321.x
https://doi.org/10.1111/j.1461-0248.2009.01321.x
http://www.ncbi.nlm.nih.gov/pubmed/19453619
https://doi.org/10.1111/2041-210X.13377
https://doi.org/10.1038/s41559-023-02021-z
http://www.ncbi.nlm.nih.gov/pubmed/36997739
http://arxiv.org/abs/2403.19372
http://arxiv.org/abs/2403.19372
https://doi.org/10.1016/j.cels.2021.09.011
http://www.ncbi.nlm.nih.gov/pubmed/34653368
https://doi.org/10.1146/annurev.es.22.110191.000555
https://doi.org/10.1146/annurev.es.22.110191.000555
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1103/PhysRevLett.118.048103
https://doi.org/10.1073/pnas.1807530115
http://www.ncbi.nlm.nih.gov/pubmed/30322918
https://doi.org/10.1038/s41598-020-60130-2
https://doi.org/10.1038/s41598-020-60130-2
http://www.ncbi.nlm.nih.gov/pubmed/32094388
https://doi.org/10.1371/journal.pcbi.1012590

