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Abstract

Background: Two most important considerations in evaluation of survival prediction models are 1) predictability -
ability to predict survival risks accurately and 2) reproducibility - ability to generalize to predict samples generated
from different studies. We present approaches for assessment of reproducibility of survival risk score predictions
across medical centers.

Methods: Reproducibility was evaluated in terms of consistency and transferability. Consistency is the agreement of
risk scores predicted between two centers. Transferability from one center to another center is the agreement of
the risk scores of the second center predicted by each of the two centers. The transferability can be: 1) model
transferability - whether a predictive model developed from one center can be applied to predict the samples
generated from other centers and 2) signature transferability - whether signature markers of a predictive model
developed from one center can be applied to predict the samples from other centers. We considered eight
prediction models, including two clinical models, two gene expression models, and their combinations. Predictive
performance of the eight models was evaluated by several common measures. Correlation coefficients between
predicted risk scores of different centers were computed to assess reproducibility - consistency and transferability.

Results: Two public datasets, the lung cancer data generated from four medical centers and colon cancer data
generated from two medical centers, were analyzed. The risk score estimates for lung cancer patients predicted by
three of four centers agree reasonably well. In general, a good prediction model showed better cross-center
consistency and transferability. The risk scores for the colon cancer patients from one (Moffitt) medical center that
were predicted by the clinical models developed from the another (Vanderbilt) medical center were shown to have
excellent model transferability and signature transferability.

Conclusions: This study illustrates an analytical approach to assessing reproducibility of predictive models and
signatures. Based on the analyses of the two cancer datasets, we conclude that the models with clinical variables
appear to perform reasonable well with high degree of consistency and transferability. There should have more
investigations on the reproducibility of prediction models including gene expression data across studies.
Background
Providing guidance on specific therapies for pathologic-
ally distinct tumor types/stages to maximize treatment
efficacy and minimize toxicity is an important goal in
clinical oncology [1-6]. The development of prediction
models using the TNM staging system, primary tumor
(T), regional lymph nodes (N), and distant metastasis
(M), with using basic clinical covariates to classify target
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patients as high-risk or low-risk for treatment recom-
mendation has been used for more than a decade.
Recent developments in microarray technology have

accelerated research in the development of genomic bio-
marker classifiers for safety assessment, disease diagnosis
and prognosis, and prediction of response for patient as-
signment [6-10]. Several microarray studies have shown
an association between patient survival and gene expres-
sion profiles [10-20]. Some recent publications have
investigated the use of microarray gene expression data
alone or in combination with the clinical covariate
variables [21-23] as an improvement over the standard
approach of using only clinical variables in estimating
tral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.

mailto:jamesj.chen@fda.hhs.gov
http://creativecommons.org/licenses/by/2.0


Chen and Chen BMC Medical Research Methodology 2013, 13:25 Page 2 of 11
http://www.biomedcentral.com/1471-2288/13/25
patient survival. It is well known that use of all genes to
develop a microarray-based prediction model can sup-
press its performance. Selection of a subset of relevant
genes to enhance predictive performance becomes an
important part in developing a microarray-based classi-
fier. However, at the present time, there is no consensus
about what types of algorithms are best for modeling
gene expression data alone or in combination with clin-
ical variables for binary prediction. Selection of the most
relevant genes to develop prediction models for survival
risk presents additional challenges.
In the evaluation of a prediction model, two most

important considerations are 1) predictability (predic-
tive performance) – ability to predict the survival
risks of patients accurately and 2) reproducibility
(generalizability) - ability of the model to predict new
samples generated from different locations or on dif-
ferent times. A good prediction model should perform
well in both predictability and reproducibility. A model
with a higher reproducibility does not necessarily imply
better predictability; it should be noted that reproducibil-
ity is valid only when the model has a good predictability.
Evaluation of the performance of prediction models for
binary outcomes has been well studied for data generated
from a single medical center. The performance of a binary
classifier is typically evaluated in terms of the positive and
negative predictive values, sensitivity and specificity, and/
or accuracy in terms of the number of true and false
positives, and the number of true and false negatives. In
contrast, when the outcome is survival time in the pres-
ence of censored observations, the measure of predictabil-
ity is less apparent. Survival prediction modeling is usually
performed to classify patients into two or more risk
groups, not to predict exact survival time so that patients
would be treated based on the risk group classification.
Common measures to assess the predictive performance
of a survival prediction model include the hazard ratios,
significant difference in the Kaplan-Meier survival cures
between identified risk groups, the concordance index
[24-26], Brier scores [27], absolute measure of predictive
accuracy [28] and several others [29-33]. Together, these
measures evaluate different aspects of predictability of the
model and its ability to accurately characterize patient’s
survival risk.
Assessment of the generalizability of a prediction

model is to determine whether its performance is repro-
ducible for similar data generated from either same or
different locations and/or different times. A prediction
model is to be applied to predicting new samples. In
addition that the model should perform well in
predicting the samples obtained from the current study,
its predictive performance must be generalizable across
different studies. A prediction model developed from
one study, that has been shown to perform well, might
not be reproduced its performance when it is applied to
other studies. The issue of the lack of reproducibility of
predictive signatures and predictive models across stud-
ies has been aware. There were several large-scale
screening studies [34-36] have identified several gene
signatures with high predictive performances in their
original discovery dataset, yet a recent report has
indicated that these signatures are seldom in common
across different studies [37]. For example, Shedden et al.
[21] attempted unsuccessfully to validate the signatures
reported by Chen et al. [13]. The lack of reproducibility
makes these biomarkers difficult to be applied in clinical
usage for treatment recommendation.
Justice et al. [38] considered the two terms for

assessing a prognostic system: accuracy (calibration and
discrimination) and generalizability (reproducibility and
transportability). They defined calibration as “predicted
probability is neither too high nor too low” for an indi-
vidual patient and discrimination as “relative ranking of
individual risk is in correct order”. Reproducibility was
defined as “ability to produce accurate predictions
among patients not included in the development of the
system but from the same population”, and transport-
ability as “ability to produce accurate predictions among
patients drawn from a different but plausibly related
population”. Note that assessment of accuracy is to
evaluate the predictive performance. However, in the
context of Justice et al. [38] the accuracy assessment
covers both the predicting probabilistic risk of an indi-
vidual patient (calibration) and ranking of his/her risk as
compared to other patients (discrimination). This paper
focuses only on the evaluation of the ranking of risks
to match observed survival times and classifying pa-
tients into risk categories accordingly. Furthermore,
generalizability defined by Justice et al. [38] consisted of
reproducibility (internal validity) and transportability
(external validity). Predictive performance (or accuracy)
should be evaluated based on the patients that are not
included in the model development [7,39]. Typically, the
current samples are used in two ways: (i) as training
samples to develop the prediction model and (ii) as
test (future) samples to assess predictive performance
[7,39-41]. That is, assessment of reproducibility within a
study has been integral part of model development. A
prediction model developed from a single study which
does not reflect many sources of variability outside
research conditions such as historical, geographic, me-
thodologic, spectrum, and follow-up interval aspects
described in Justice et al. [38], represents an internal va-
lidation [39]. In this paper, reproducibility refers the
ability to produce performance on patients from other
studies, transportability. Therefore, “reproducibility” has
the meaning as “generalizability”. The term “reproduci-
bility” is a common terminology used in the evaluation
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of different platforms, studies, gene signatures, etc.
[42,43]. More detailed approaches and discussions on
the development of a prediction model from a single
study are given in the Discussion section. The definitions
of the terminologies considered in this paper are sum-
marized in Table 1.
The primary objective of this paper is to present

approaches to investigating reproducibility of predictive
models and signatures across different medical centers.
Reproducibility across centers is evaluated in terms of
consistency and transferability. Consistency is the agree-
ment of risk scores predicted between two centers.
Transferability from one center to another center is the
agreement of the risk scores of the second center
predicted by each of the two centers. We considered
eight risk prediction models based on established
approaches for modeling clinical variables and micro-
array gene expression data. Two recent studies on lung
cancer [21] and colon cancer [20], where data were
collected from more than one center, are used in the
evaluation of the predictability and generalizability of
predictive models and signatures.
The first step in the evaluation of reproducibility of a

prediction model is to assess its predictability. In theory,
some models may have a good predictability but a poor
reproducibility, or vice versa. Models with high predict-
ability and reproducibility are obviously desirable. Since
standard measures to assess predictability of survival
prediction models have not been fully established, vari-
ous predictability measures are considered in the evalu-
ation. The predictability and reproducibility measures of
each of the eight models are calculated to assess the
overall performance of each model. However, we do not
attempt to propose or identify the best approach/model
to predict patient survival risk, the purpose is to illus-
trate the differences among the eight models.

Methods
Models developed from training dataset
Eight survival prediction models to estimate patient sur-
vival risk were considered. These eight models included
Table 1 Definitions of key terms

Term Definition

Predictability (Predictive
performance)

Ability of a model to predict risk scores of p

Generalizability
(Reproducibility)

Ability of a model to predict risk scores of p
times).

Consistency Agreement between two centers to predic

Transferability. Agreement between one center and the ta

Internal validation An assessment of predictive performance o
a test set, the model is developed in the tr
two clinical models, two gene expression models, and
four models based on combinations of the two clinical
and two gene expression models. The two clinical
models were 1) the Cox proportional hazards model
(Model A) and 2) the regression tree (Model B), these
are two well-established methods for modeling sur-
vival data. All clinical variables including AJCC (The
American Joint Committee on Cancer) stage, gender,
age, and histology were considered in both models.
The Cox proportional hazards model approach involved
fitting the relevant clinical variables to a multivariate
Cox model [44]. The regression tree modeling approach
consisted of two steps. The first step was to use a stand-
ard survival tree model [45-50] to classify patients into
different risk groups according to their incidence rates.
The second step involved fitting a univariate Cox model
using the patients’ incidence rates as an independent
variable.
It is well known that gene expression data typically in-

volve a large number of genes; selection of a subset of
relevant genes to enhance predictive performance
becomes an important part in the model development.
The data were first analyzed using the univariate Cox
model to select a set of “significant” genes. There still
could be too many significant genes in a model, which
could make the model estimate unstable. The dimen-
sional reduction using principal component analysis can
be applied to extract the k relevant meta-genes, the lin-
ear combinations of the all selected genes. The k can be
tuned by cross-validation, but we set k=5. An alternative
approach is to select the k most significant genes to
develop the model, we set k = 10. For the set of selec-
ted genes, two gene expression models were developed
using a multivariate Cox model with covariates provi-
ded by 1) the first five principal components (Model C)
and 2) the top 10 ranked genes (Model D). Each gene ex-
pression model was additively combined with each clinical
model to develop four clinical and gene expression
models: E=A+C, F=A+D, G=B+C, and H=B+D. A sum-
mary of the eight models is given in Additional file 1:
Table S1.
atients that can match their survival risks (not survival times).

atients generated from different studies (different locations or different

t the risk scores of a targeted center.

rgeted center to predict risk scores of targeted center.

f a model in which the available data are divided into a training set and
aining set and applied to the test set.
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Assessment of predicted risk scores for the patients in
test dataset
The regression coefficients of the fitted Cox model

developed from the training data, β̂train , were used to
compute the predictive risk scores for each patient in

test data, β̂trainTxtest . The predictive risk scores were
then used to compute predictive performance measures
to evaluate the survival prediction model built from the
training data. Although the continuous risk scores for
test data are adequate to rank the risk levels, clinicians
often use the stratified risk groups to exhibit the risk cat-
egories to the patients. Therefore, both approaches are
considered in the evaluation: single-group analysis and
two-group comparison.
In the single-group analysis, the p-value of hazard

ratio ( eβ̂ ), R2, Somers’ rank correlation Dxy [26], and
time dependent receiver operating characteristic (ROC)
curve are obtained to evaluate the predictive scores. The
p-value of hazard ratio and R2 are calculated from the
fitted univariate Cox model of the predictive risk scores.
The Somers’ rank correlation Dxy and R2 measure the
goodness-of-fit in terms of agreement and explained
variation between the risk scores and survival times, re-
spectively. ROC curve is a measure of predictive ability
of binary classifiers, and Hegerty et al. [30] firstly applied
it to develop the time dependent ROC, ROC(t), curve
for censored survival data to evaluate a diagnostic
marker. They have shown that it can lead to
inconsistence of the negative probability mass if the true
positive rates, TPR(t), and false positive rates, FPR(t), for
ROC(t) curve are estimated by the conditional probabil-
ity. However, the ROC(t) curve in this paper does not re-
sult in the inconsistence (Additional file 1).
The two-group comparison is the most frequently

used approach for performance assessment. The test
data are first segregated into high-risk and low-risk
groups by a cutoff threshold, and the Cox model or log-
rank test is then applied to compare the difference in
survival time between the two groups. This approach
depends on the choice of threshold. We use the median
of the training scores as the threshold. A significant p-
value implies that the survival times between the high-
risk and low-risk group ranked by the risk scores are dif-
ferent significantly. We calculated both p-values of the
hazard ratio in Cox model and log-rank test for
completeness.
Correlation coefficient for measure of consistency and
transferability
Reproducibility of survival risk predictions was evaluated
in terms of the two measures: consistency and transfer-
ability. Both are measures of an agreement of predictive
risk scores predicted by two centers. Consistency is the
agreement between two centers to predict the risk scores
of another center, which can be one of the two centers
or an independent third center. Transferability from one
center to another center is the agreement of the risk
scores of the second center predicted by each of the two
centers. The transferability can be in terms of 1) whether
a predictive model developed from one center can be
applied to predict the survival risk for the patients from
other centers (model transferability) or 2) whether signa-
ture markers of a predictive model developed from one
center can be applied to predict patients from other
centers (signature transferability). Both consistency and
transferability are measures of an agreement of two
centers to predict risk scores of a targeted center. The
transferability characterizes the applicability of a model
built from one center and applied to the targeted center.
Consistency characterizes an agreement between two
centers to predict a targeted center. Consistency is a
general terminology covering two or more centers. Since
the agreement between two centers is of the primary
interest, assessment of transferability is more useful.
Agreement between two centers is evaluated using the

Pearson’s correlation coefficient.
The transferability from center i to center j can be

expressed mathematically as Tranij ¼ ρ β̂
T
i Xj; β̂iTXj

� �
;

and the consistency of centers i and j to predict center k
can be expressed as Consij k¼ρ β̂ iXk ;β̂ jXkð Þj , where Xi and ρ

are the predictor matrix and the Pearson correlation co-

efficient and β̂i, β̂j and β̂k are the coefficients of the fit-

ted models developed from the centers i, j, and k,
respectively. When k = j (or i), the consistency is identi-
cal to transferability from center i to j (or from j to i).

The coefficient β̂i can be the estimate from the model
developed using the entire dataset or using a partial
dataset in the center i. The use of entire dataset will
evaluate the transferability once, i.e., the correlation co-
efficient between the two sets of predicted scores
developed by two centers is computed once. On the
other hand, the use of partial data can compute the cor-
relation coefficient multiple times with different sets of
partial data. In the analysis of two cancer datasets shown

below, β̂i is estimated based on the entire dataset for the
lung cancer data and is estimated based on the partial
dataset for the colon data (Results).

Results
Lung cancer
The lung cancer dataset was composed of four datasets
with a total of 442 patients generated from the
Directors’s Challenge Consortium at four medical
centers: University of Michigan Cancer Center (UM),
Moffitt Cancer Center (HLM), Dana-Farber Cancer



Table 3 Performance evaluation using two-group
comparison for the lung cancer data (training data: UM
and HLM; test data: MSK and DFCI)

Model Cox Model Log-rank
Test P-valueHR P-value

A 3.78 1.18E-6 1.81E-7

B 2.03 0.003 0.002

C 1.34 0.264 0.261

D 0.94 0.808 0.811

E 1.99 0.006 0.005

F 1.91 0.009 0.007

G 1.57 0.068 0.066

H 2.37 0.005 0.004

The high-risk and low-risk groups for test data were segregated based on the
median of the training scores. These are results from fitting a Cox model using
the risk group as an independent variable and from the log-rank test.

Chen and Chen BMC Medical Research Methodology 2013, 13:25 Page 5 of 11
http://www.biomedcentral.com/1471-2288/13/25
Institute (DFCI), and Memorial Sloan-Kettering Cancer
Center (MSK) (https://array.nci.nih.gov/caarray/project/
jacob-00182) [21]. The four datasets used a common
platform for the data collection. Gene expression data
were generated by Affymetrix 133A chips and the ex-
pression values were calculated using the robust multi-
array average (RMA) algorithm [51]. The number of
patients from each institution were 177 (UM), 79
(HLM), 82 (DFCI), and 104 (MSK). The clinical
covariates included age, gender, lymph nodes N, tumor
stage T, and histology; the samples or genes with missing
values were excluded from the analysis.
For illustrative purpose, we first followed the analysis

of Shedden et al. [21], who utilized the UM and HLM
data as the training set and the MSK and DFCI data as
the test set. An additional analysis was performed, in
which the roles of the training data and test data were
interchanged. Estimates of several predictive perform-
ance measures from the risk scores predicted by the
eight models are given in Tables 2, 3, 4, and 5. Perform-
ance measures obtained from the two analyses are con-
sistent, except for the case when Model C is used to test
the UM and HLM datasets (Tables 4 and 5). Model C
has small estimates of absolute Dxy, HR, and R2, yet
shows significance in the single-group analysis (p=0.021)
and non-significant difference in the two-group com-
parison (p=0.132 and 0.129 for Cox model and log-
rank test).
In Tables 2,3,4 and 5, the clinical models (Models A

and B) appear to perform better than the gene expres-
sion models (Models C and D). In Tables 2 and 3,
Models A and H appear to perform the best; in Tables 4
and 5, Models A and E perform the best. The prediction
models with both clinical and gene expression variables
(Models E, F, G, and H) show little or no improvement
over the clinical models. In summary, Model A appears
to perform the best among the eight models. An ROC
analysis of the 8 models estimated at month 36 after
Table 2 Performance evaluation using single-group
analysis for the lung cancer data (training data: UM and
HLM; test data: MSK and DFCI)

Model Dxy HR P-value R2

A −0.420 3.34 1.50E-8 0.169

B −0.244 1.59 2.19E-4 0.059

C −0.093 1.04 0.629 0.001

D −0.050 1.05 0.655 0.001

E −0.196 1.19 0.031 0.026

F −0.265 1.51 8.46E-4 0.062

G −0.170 1.15 0.083 0.017

H −0.333 1.71 2.50E-5 0.083

Columns 3–5 are the estimates from fitting a Cox model using the predicted
risk scores as an independent variable.
surgery confirms our findings (Additional file 1: Figure
S1), and Model A is also the best one. The predictive
abilities of the eight models are also evaluated by the
pairwise between center predictions. Each center can be
predicted by three other centers for a total of 12 pairwise
predictions (Additional file 1: Table S2-S5). Models A, E,
and G appear to perform the best among the eight
models; Model A performs the most consistently well.
These results are in agreement with the above analysis.
For Models A, E and G, HLM predicting DFCI has the
best performance, it has the best performance in
compared with the results from other two center
predictions. MSK predicting HLM, DFCI predicting
MSK and MSK predicting DFCI have poorest prediction
ability for Models A, E, and G, respectively.
The four lung cancer datasets were further evaluated

to address the issue of reproducibility of the estimated
risk scores among the four medical centers. Each center
has its own training scores and three risk scores subse-
quently predicted by the models developed from the
other three centers. For each center, transferability and
Table 4 Performance evaluation using single-group
analysis for the lung cancer data (training data: MSK and
DFCI; testing data: UM and HLM)

Model Dxy HR P-value R2

A −0.303 1.98 9.37E-11 0.149

B −0.230 1.61 2.18E-9 0.109

C −0.183 1.31 0.021 0.020

D −0.119 1.11 0.177 0.007

E −0.342 1.70 3.61E-11 0.150

F −0.237 1.30 1.20E-5 0.067

G −0.269 1.51 4.49E-8 0.101

H −0.258 1.37 5.19E-7 0.086

https://array.nci.nih.gov/caarray/project/jacob-00182
https://array.nci.nih.gov/caarray/project/jacob-00182


Table 5 Performance evaluation using two-group
comparison for the lung cancer data (training data: MSK
and DFCI; testing data: UM and HLM)

Model Cox Model Log-rank
Test P-valueHR P-value

A 2.40 6.00E-8 2.37E-8

B 1.74 5E-4 4.21E-4

C 1.53 0.132 0.129

D 1.33 0.138 0.137

E 2.10 3.99E-5 2.66E-5

F 1.64 0.002 0.002

G 1.74 0.002 0.001

H 1.74 6.43E-4 5.48E-4

Table 6 Estimates of correlation between predicted risk
scores from a center’s own training model and predicted
risk scores using the training model of another center
(training center) are given in the first three rows of each
table (model transferability)

Center Training Center A B C D E F G H

UM

HLM 0.74 0.62 0.56 0.33 0.58 0.43 0.56 0.42

DFCI 0.77 0.56 0.56 0.14 0.71 0.32 0.65 0.27

MSK 0.66 0.47 0.41 0.25 0.49 0.34 0.47 0.31

HLM and DFCI 0.83 0.78 0.54 0.19 0.46 0.4 0.59 0.39

HLM and MSK 0.58 0.38 0.39 0.22 0.34 0.23 0.33 0.18

DFCI and MSK 0.5 0.36 0.2 0 0.3 0.11 0.35 0.15

HLM

UM 0.65 0.63 0.49 0.09 0.63 0.25 0.53 0.27

DFCI 0.83 0.77 0.5 0.21 0.53 0.34 0.64 0.37

MSK 0.53 0.18 0.27 0.37 0.38 0.4 0.28 0.33

UM and DFCI 0.68 0.66 0.5 0.25 0.75 0.47 0.65 0.47

UM and MSK 0.72 0.46 0.34 0.12 0.54 0.29 0.54 0.2

DFCI and MSK 0.44 0.27 0.2 0.03 0.47 0.24 0.49 0.19

DFCI

UM 0.84 0.62 0.6 0.29 0.72 0.54 0.65 0.43

HLM 0.86 0.87 0.53 0.35 0.56 0.43 0.67 0.48

MSK 0.56 0.41 0.19 0.34 0.23 0.38 0.31 0.36

UM and HLM 0.72 0.62 0.52 0.37 0.61 0.55 0.6 0.51

UM and MSK 0.7 0.54 0.44 0.34 0.51 0.38 0.51 0.28

HLM and MSK 0.61 0.34 0.41 0.27 0.38 0.28 0.3 0.17

MSK

UM 0.7 0.5 0.35 0.35 0.45 0.46 0.46 0.36

HLM 0.66 0.19 0.5 0.39 0.45 0.3 0.32 0.29

DFCI 0.54 0.21 0.41 0.06 0.32 0.11 0.41 0.11

UM and HLM 0.75 0.55 0.42 0.14 0.55 0.32 0.47 0.27

UM and DFCI 0.76 0.52 0.7 0.35 0.71 0.42 0.6 0.39

HLM and DFCI 0.88 0.77 0.59 0.28 0.48 0.52 0.62 0.49

The last three rows (consistency) display the correlation between predicted
risk scores of the “center” using the training models developed by the
“training centers.”
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consistency of the patients’ estimated risk scores across
centers were calculated through the use of pairwise cor-
relation analyses. Pairwise correlation estimates resulting
from the eight prediction models are given for each
medical center in Table 6. Correlation coefficients listed
in the first three rows in each panel measure model
transferability. The last three rows show pairwise correl-
ation coefficients between the risk scores predicted by
any two of the other three centers; the last three rows
measure the consistency between two centers to predict
a third center. The correlation coefficients in Table 6 are
not a measure of signature transferability since the four
sets of risk scores were predicted by four different
classifiers with different predictors.
In general, a good prediction model shows a high

cross-center consistency. Model A shows the best cross-
center consistency among the eight models. Centers
HLM and DFCI show excellent agreement with correl-
ation coefficients for the four centers ranging between
0.83 and 0.88 when each center is used as the training
center. UM, HLM, and DFCI appear to have reasonable
agreement. MSK shows poor agreement with the other
three centers. Additional file 1: Figure S2 shows the pair-
wise scatter plots for Model A (Additional file 1: Figure
S2). Besides, Model D for DFCI and MSK has smallest
consistency correlation to predict UM (ρ =0) and HLM
(ρ =0.03), and it also has poor transferability from DFCI
to MSK (ρ =0.06). Model D from the MSK training mo-
del showed poor predictive ability for DFCI (Additional
file 1: Table S5c).

Colon cancer
The colon dataset consisted of 232 patients from two
medical centers: 55 patients from Vanderbilt Medical
Center (VMC) and 177 patients from Moffitt Cancer
Center (MCC). The clinical covariates include age, gen-
der, and AJCC stage (http://ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE17538) [20]. RMA was used to pre-
process/normalize gene expression data (Affymetrix
133Plus chips). There were three types of survival data:
overall survival, disease specific survival, and disease free
survival; however, only the overall survival time variable
was evaluated. We follow the analysis of Smith et al. [20]
and use data from the 55 VMC patients as the training
data and data from the 177 MCC patients as the test
dataset. The samples or genes with missing values are
not included in the analysis.
Table 7 and 8 show estimates of several performance

measures for the eight prediction models from the
single-group analysis and two-group comparison. The
median value of risk scores in the training data for
Models C, E, and G could not generate two risk groups
for comparison. For Model E all patients were in one
group; for Models C and G the patients in one of two
groups were all censored (Additional file 1: Figure S3).

http://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17538
http://ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17538


Table 7 Performance evaluation of the colon cancer data
for eight prediction models

Model Dxy HR 95% C.I. P-value R2

A −0.520 3.85 2.27 6.51 5.04E-7 0.283

B −0.488 5.13 3.09 8.51 2.46E-10 0.251

C −0.227 2.48 1.52 4.04 2.78E-4 0.043

D −0.126 1.33 0.83 2.11 0.233 0.021

E −0.446 4.18 2.47 7.06 8.99E-08 0.169

F −0.210 1.87 1.16 3.00 0.01 0.049

G −0.563 4.52 2.66 7.67 2.25E-08 0.293

H −0.361 2.29 1.42 3.68 6.5E-4 0.149

Somers’ correlation (Dxy), the hazard ratio (HR) with the 95% confidence limits
(CI) and p-value of significance (P-value), and the coefficient of determination
(R2) are given for the single-group analysis.
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The ROC curves of patient survival evaluated at months
23, 42, and 68 after surgery, which corresponds to the
25th, 50th, and 75th percentiles of the follow-up time,
respectively, are shown in Additional file 1: Figure S4.
Models A, B, and G show the best performance. Note
that the c-index=−0.6033 (or equivalently Dxy=−0.2066)
in Smith et al. [20] is much smaller than the Dxy values
listed for the aforementioned best performing models.
Using resampling, the colon data were further

evaluated to address whether or not the prediction
model built from VMC could be used to predict risk
scores for MCC patients. The 177 patients from MCC
were randomly split into a training set of 55 patients
and a test set of 122 patients. The 55 samples from
VMC and the 55 training samples from MCC were sep-
arately used to develop two prediction models (vmc and
mcc1) to predict risk scores for the 122 test samples.
The signature genes from model vmc are also applied to
develop model mcc2 using the 55 training samples from
MCC. In total, three sets of risk scores, resulting from
the vmc, mcc1, and mcc2 models, were estimated for
Table 8 Performance evaluation of the colon cancer data
for eight prediction models

Model HR 95% C.I. P-value R2

A 3.73 2.25 6.16 2.90E-7 0.152

B 5.13 3.09 8.51 2.46E-10 0.220

C NA NA NA NA NA

D 1.73 0.93 3.22 0.083 0.019

E NA NA NA NA NA

F 2.12 1.21 3.69 0.008 0.044

G NA NA NA NA NA

H 2.68 1.23 5.85 0.013 0.044

The hazard ratio (HR) with the 95% confidence limits (CI) and p-value of
significance (P-value), and the coefficient of determination (R2) are given for
the two-group comparison.
the 122 test samples. The correlation between the risk
scores from vmc and mcc1, denoted as ρ1, measures
model transferability. The correlation between the risk
scores from vmc and mcc2 is denoted as ρ2, and the cor-
relation between risk scores from mcc1 and mcc2 is
denoted as ρ3. The correlation ρ1 has similar interpret-
ation as the model transferability in the lung cancer
(Table 6, first three rows of each center). The correlation
coefficients for the lung cancer data were computed
from the risk scores of the training model developed
from the test center, but the correlations in the colon
cancer data were computed from the risk scores of the
122 test samples predicted by the training model. ρ2 and
ρ3 both measure transferability of the signature de-
veloped by vmc to the mcc2 model. ρ2 measures the
transferability of predicted risk scores between two
centers using the same VMC signature and ρ3 measures
the transferability of predicted risk scores using MCC
modeled with different signatures. Re-sampling and
calculations for ρ1, ρ2, and ρ3 were repeated 1,000 times.
Boxplots of the resampled correlation coefficients for
the eight models are shown in Figure 1.
ρ1 equals ρ2 and ρ3 is 1 for Models A and B because

both models included only clinical variables and resulted
in the same prediction model. In general, if two centers
have the same signatures, then ρ1 should equal ρ2, and
ρ3 should be 1. Furthermore, the samples generated
within MCC should be more homogeneous than the
samples between MCC and VMC; therefore, ρ3 is
expected to be larger than ρ1 (Model A-H), where in
Model D ρ1 is slightly larger than ρ3. In summary,
Model A shows an excellent transferability between the
two centers. In addition, Models D and F have poorer
transferability, and these two models have the poorest
prediction ability in Tables 7 and 8.

Discussion and conclusions
Development of a risk prediction model for clinical use
involves the two stages: 1) model development based on
a set of signatures, and 2) model validation with a per-
spective clinical trial. This paper mainly considers the
first stage in the model development. Model develop-
ment also involves two stages: 1) model building and 2)
model (analytical) validation. Model building involves fit-
ting a Cox survival model by selected a set of relevant
predictor signatures, from the present study. Model val-
idation is to assess if the fitted model can predict relative
risk of patient samples generated from the available data,
which can include the present study and other studies.
Since prediction model is typically developed based on a
single study, model validation often refers to the assess-
ment of predictive performance.
Two methods are commonly used to assess perform-

ance of a prediction model: the split-sample method and



Figure 1 Box plots of the correlation coefficients between risk scores of Moffitt Cancer Center (MCC) test data predicted by the
models developed from the Moffitt and Vanderbilt data using re-sampling techniques based on 1,000 repetitions. For each statistical
model, three correlations are computed: 1) ρ1 (model transferability): consistency of risk scores developed from the VMC and MCC centers, 2) ρ2
(signature transferability): consistency of risk scores predicted by two centers using the same MCC signature, and 3) ρ3 (signature transferability):
consistency of risk scores predicted from MCC data using different signatures.
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cross-validation method. In the split-sample procedure,
the sample dataset is split into two subsets (either ran-
domly split the entire data or a designated test dataset),
a training set for model building and a test set for model
validation. Cross validation involves repeatedly splitting
the data into a training set and test set. The predictive
performance is the “average” of the numerous training-
test partitions. The split-sample procedure provides a
single analysis of performance metrics, such as Dxy and
p-values, etc. For data from a single (center) study, cross
validation can be more valuable than the randomly split
method. A common analysis of data from a multicenter
study is often limited to evaluation of performance
metrics using the split-sample method [20,21]. The
multicenter study provides valuable data for further mo-
del validation. In addition to investigate the predictabil-
ity of a model (Tables 2, 3, 4 and 5, 7, 8, and Additional
file 1: Tables S2-S5), this paper presents statistical
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analysis to illustrate an assessment of cross-center re-
producibility. Assessment of reproducibility across centers
provides another layer of model validation.
The cross-validation method has also been applied to

tune the parameters in some training methods for gene
selection such as univariate selection, forward stepwise
selection, principal components regression, supervised
principal components regression, partial least squares re-
gression, ridge regression and LASSO [52-54], and the
approach may lead to less over fitted training models.
The over fitting can result in poor prediction ability
which may be caused by other reasons such as inappro-
priate models, and the prediction ability indices are
more appropriate to assess the performance. Thus the
cross-validation for tuning parameters is not applied to
obtain the models in this paper, and some of these
models we used are the well-established methods in
[33,41].
The cross-center reproducibility is measured by

correlations of the two sets of predicted scores derived
from two centers, whereas the standard performance as-
sessment considers the analysis of predicted scores from
the test data. We present two terminologies to describe
cross-center reproducibility: consistency and transfer-
ability. The consistency is a general term referring to an
agreement between two sets of predicted scores derived
from two entities (centers). Transferability refers specif-
ically to an agreement of two sets of risk scores for a tar-
get center, one set is derived from a model developed
from the target center and another set is predicted by
another center. The risk scores of the target center can
be the training scores derived from the fitting of entire
data (lung cancer data), or they can be the predicted
scores derived from fitting a partially set of data (colon
cancer data). Although most cancer study does not in-
volve more than two centers, the transferability should
have more use for assessment of reproducibility between
two centers in practice.
The lung cancer data consists of four medical centers.

The predictability of the each of the eight models was
assessed by evaluating the performance metrics between
center predictions (Additional file 1: Tables S2-S5). The
consistency and transferability of the predicted scores
derived from two centers were further evaluated
(Table 6). In this analysis, the entire data set was used in
the evaluation; that is, the consistency and transferability
correlations were evaluated for the entire target center.
In this analysis, Model A appears to perform the best in
terms of both the predictability and cross-center repro-
ducibility. In terms of the cross-center prediction, the
prediction from HLM to DFCI is the best. It could result
from the high agreement for the clinical variables in the
different data. A conclusion is that a good prediction
model shows a high cross-center consistency. It should
be emphasized that higher consistency does not neces-
sarily imply better performance.
The colon cancer data were analyzed slightly different.

The colon dataset consisted of 55 VMC patients and
177 MCC patients. We used the MCC as a target center
to evaluate the prediction models built from VMC. In
this analysis, 55 randomly selected MCC patients (a par-
tial dataset) were used to develop a model to predict 122
remaining patients and compared with the model
developed from 55 VMC patients. The consistency and
transferability correlations were evaluated only for the
122 patients. We considered signature transferability
and model transferability to assess the generalizability of
prediction models. Although a major concern in the val-
idation of a microarray-based prediction model is model
transferability i.e. the usefulness of a transferred model
outside of its intended use, it is also desirable that the
signature developed from the internal dataset is applic-
able to predict future samples.
For gene expression Models C and D, the signature

consistency appears to be higher than the model
consistency (Figure 1). However, neither model performs
well when compared to the clinical models (Tables 7 and
8). It should be emphasized that higher consistency does
not necessarily imply better performance. Model G has
the highest Dxy value, but Models A and B have better
consistency in both the classifier transferability and sig-
nature transferability. In all, it appears that Model A
(Cox model) performs more consistent than Model B
(regression tree). Therefore, the reproducibility of cancer
survival model including gene expression data across dif-
ferent centers or studies could be still controversial, that
could be caused by the geographic and/or methodologic
variations, and it should be extensively studied. Finally,
the transferability of model or signature is meaningful
only after the model has established its performance.
Generally, a prediction model has medical utility only

if it enables clinicians to make better treatment decisions
for individual patients. Establishing medical utility of a
prediction model requires validation from a prospective
clinical trial. Although there have been a number of
publications discussing the design and analysis of clinical
trials for validation of cancer prognostic and predictive
models [55-58], very few clinical trials have been con-
ducted. A major factor is due to the lack of reproduci-
bility of the prediction model to justify conducting a
prospective clinical validation trial. In this paper, we il-
lustrate an analytical (external) validation of risk predic-
tion modeling to assess reproducibility across studies.
Based on the analyses of the two cancer datasets, we
conclude that the models with clinical variables appear
to perform well with high degree of consistency and
transferability and inclusion of gene expression variables
shows little improvement.
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Additional file

Additional file 1: For patient j, the survival time can be represented
by (Tj, δj) where Tj is the follow-up time and δ is the indicator for
event (1:event and 0: censoring), and the predictive risk score is Hj.
The true positive rate, TPR(t,c), and the false positive rate, FPR(t,c), for
some cut, c, of the risk scores are defined as TP(t,c)/(TP(t,c)+FN(t,c)) and
FP(t,c)/(FP(t,c)+TN(t,c)), respectively. Table S1. The eight risk prediction
models. Table S2a. Prediction ability of HLM training model for UM. Table
S2b. Prediction ability of DFCI training model for UM. Table S2c.
Prediction ability of MSK training model for UM. Table S3a. Prediction
ability of UM training model for HLM. Table S3b. Prediction ability of DFCI
training model for HLM. Table S3b. Prediction ability of MSK training
model for HLM. S4a. Prediction ability of UM training model for DFCI.
S4b. Prediction ability of HLM training model for DFCI. S4c. Prediction
ability of MSK training model for DFCI. S5a. Prediction ability of UM
training model for MSK. S5b. Prediction ability of HLM training model for
MSK. S5c. Prediction ability of DFCI training model for MSK. Figure S1.
ROC curves for the eight models estimated at month 36. (a) Training data
UM/HLM, test data DFCI/MSK. Models A and F have better performance.
(b) Training data: DFCI/MSK, test data UM/HLM. Models A and E have
better performance. Figure S2a. Scatter plots of training scores and test
scores for UM. Figure S2b. Scatter plots of training scores and test scores
for HLM. Figure S2c. Scatter plots of training scores and test scores for
DFCI. Figure S2d. Scatter plots of training scores and test scores for MSK.
Figure S3. Kaplan–Meier survival curves and p-value from the log-rank
test for MCC patients from each of the eight prediction models. Each
patient was classified into the high- or low-risk group based on the
median risk score in the training data generated from the VMC patients.
Figure S4. ROC curves for patient survival using each of the eight
models. Patient survival is evaluated at 25th, 50th, and 75th percentiles of
follow-up time, corresponding to month 23, 42, and 68 after surgical
removal of colon tumors.
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