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Abstract: Autonomous underwater vehicles (AUVs) have been increasingly applied in marine envi-
ronmental monitoring. Their outstanding capability of performing tasks without human intervention
makes them a popular tool for environmental data collection, especially in unknown and remote
regions. This paper addresses the path planning problem when AUVs are used to perform plume
source tracing in an unknown environment. The goal of path planning is to locate the plume source
efficiently. The path planning approach is developed using the Double Deep Q-Network (DDQN)
algorithm in the deep reinforcement learning (DRL) framework. The AUV gains knowledge by
interacting with the environment, and the optimal direction is extracted from the mapping obtained
by a deep neural network. The proposed approach was tested by numerical simulation and on a real
ground vehicle. In the numerical simulation, several initial sampling strategies were compared on
the basis of survey efficiency. The results show that direct learning based on the interaction with
the environment could be an appropriate survey strategy for plume source tracing problems. The
ﬁr;aedca!\(tfgsr comparison with the canonical lawnmower path used in practice showed that path planning using
DRL algorithms could be potentially promising for large-scale environment exploration.
Citation: Wu, Z.; Wang, S.; Shao, X.;
Liu, F; Bao, Z. Adaptive Path

) Keywords: path planning; autonomous underwater vehicle (AUV); deep reinforcement learning
Planning for Subsurface Plume

(DRL); Double Deep Q-Network (DDQN)

Tracing with an Autonomous
Underwater Vehicle. Robotics 2024, 13,
132. https://doi.org/10.3390/
robotics13090132

1. Introduction
Academic Editor: Dan Zhang . . . . . . .
Oil spills cause immediate and long-lasting damage to the marine environment and

Received: 30 June 2024 even adverse impacts on human health. An ecosystem-level injury to coastal and deepwater
Revised: 31 July 2024 species, as well as their habitats, was declared as a result of the 2010 Deepwater Horizon oil
Accepted: 19 August 2024 spill [1]. This oil spill disaster is known as the largest spill in world history. Approximately
Published: 31 August 2024 3.19 million barrels of crude oil were released into the ocean [2]. Most of the spilled oil

moved upwards through the water column and formed oil slicks, floating on the water
surface and extending over 43,300 square miles. Subsurface oil plumes were also observed
and identified as a mixture of oil droplets and chemical dispersants via in situ sampling [3]
and ingredient analysis [4].

Oil transport on the surface and in the water column is governed by a variety of
physical, chemical, and biological processes. Oil slick detection and subsurface plume
conditions of the Creative Commons _ tTacking can improve the understanding of oil movement and the associated effects of
Attribution (CC BY) license (https:/;  0c€an circulation. While oil slicks can be observed by using synthetic aperture radar (SAR)
creativecommons.org/ licenses/by/  images [5], tracing subsurface oil plumes is not straightforward [6]. In the Deepwater
40/). Horizon oil spill, chemical dispersants were injected into the oil flow near the wellhead as
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a response action. Small oil droplets were formed and retained in deep water as subsurface
plumes at a 1000-1200 m water depth [4]. Such deepwater oil plumes, as well as the
subsurface plumes resulting from the interaction between the oil slick and surface mixing
processes, are not accessible for visual observation [7].

Autonomous underwater vehicles (AUVs) are regarded as the most relevant devices
in geoscience studies that are targeted at the interface between the seabed and the water
column [8]. Compared with conventional static sensors and manned platforms, AUVs are
better suited for subsurface plume tracing in that they are more flexible in deployment
and can operate autonomously in remote areas that might be hostile or dangerous to
human beings. In the 2010 Deepwater Horizon oil spill disaster, a Sentry AUV was used to
conduct subsurface sampling surveys to characterize deepwater oil plumes [7]. It was later
revealed that underwater oil spills result in a significant fraction of hydrocarbons being
retained in midwater [9]. Motivated by AUVs’ prominent performance in plume tracing
during the Deepwater Horizon oil spill, Dipinto et al. equipped a Remus AUV (Woods
Hole, MA, USA) with oil characterization sensors to leverage AUV technologies in oil spill
responses [10], Hwang et al. established a control architecture for AUVs to monitor and
determine undissolvable marine pollutants resulting from oil spills [11], and Gomez-lbanez
et al. developed an AUV-based water sampling system for the autonomous detection and
sampling of underwater oil plumes [12].

AUVs’ performance in plume tracing tasks greatly depends on their survey strategy.
The most common strategy undertaken by AUVs in practice is to follow a preplanned
lawnmower pattern [6,10]. This canonical survey path is usually adopted to achieve full
coverage over a studied region. However, significant features of the subsurface plume
may be missed because the location and extent of the plume are usually priorly unknown.
Efforts have been made to optimize the survey strategies with which AUVs can plan the
sampling path to the plume source.

An initial attempt in plume tracing was to calculate a concentration gradient [13]. But
gradient-based algorithms are not practical for oil plume tracing because an oil plume is
actually made up of droplets of oil with a discontinuous and patchy distribution in the
marine environment [6,14]. Investigations have been carried out on applying biological
behaviors to robotic path planning for plume tracing. The most widely used biomimetic
strategies are based on olfactory sensing, which is used by animals to search for targets,
such as food, nests, and mates. Farrell et al. presented a behavior-based planning algorithm
for chemical plume tracing [15]. Motivated by the maneuvering behaviors of moths flying
upwind along a pheromone plume, Li et al. designed a moth-inspired motion planning
strategy for AUVs to trace the plume source [16]. Grasso and Atema explored a biological
plume tracing strategy known as ‘odor-gated rheotaxis ’ that incorporates the sensing
of the mean flow and chemical detection for guidance [17]. Bioinspired behavior-based
algorithms generate reactive strategies. Fixed actions are executed repetitively. Hence,
these approaches may not be compatible with complex environments [18].

As robotic technology advances, solutions including a group of robots have also
been proposed as a promising approach to plume tracing [19-21]. The focus of these
studies was the chemical plume tracing (CPT) problem in environment monitoring using
ground-based or aerial vehicles. Plume source tracing in the underwater environment
by multi-agent systems is intrinsically difficult because the ocean environment is highly
dynamic and unstable [22]. Common multi-agent tracking approaches based on accurate
feature modeling are usually not applicable [23]. Several recent studies were devoted to
providing solutions for restricted communication [24], analyzing the collective behavior
of multi-agent systems with various degrees of heterogeneity [25], and accelerating the
learning process of multi-agent systems [26].

To achieve efficient plume source locating via multi-robot collaboration, the most
essential issue is to develop intelligent survey strategies that can be extended for swarm
applications. Pang and Farrell proposed a source-likelihood mapping approach based on
the Bayesian inference method to locate the sources of chemicals in a turbulent fluid flow
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by estimating the source location based on the detection history [27]. Jiu et al. presented a
path planning strategy based on Partially Observable Markov Decision Processes and the
artificial potential field algorithm [28]. Other potential techniques include those having
been applied in environmental monitoring, where the interests of detection are associated
with the extreme values of the sampled variable [29]. Reinforcement learning approaches
have also used to solve the plume tracing problem [18]. A long short-term memory based
deterministic policy gradient algorithm was adopted to optimize the plume tracing strategy
for an AUV in a turbulent environment. Wang and Pang proposed a deep reinforcement
learning (DRL)-based fused algorithm to locate hydrothermal vents [30]. The DRL algo-
rithm was utilized to learn the weight that is used to fuse the Bayesian-inference method
and the moth-inspired method.

This paper presents a reinforcement-learning-based path planning approach for AUVs
to locate the source of subsurface oil plumes. It is an extension of our previous work [31]. It
is assumed that no prior knowledge of the plume is available, and the goal is to adaptively
find the plume source location efficiently. In the presented approach, the plume tracing
problem is modeled under the Markov Decision Process (MDP) framework, and the Double
Deep Q-Network (DDQN) algorithm is used to learn an optimal survey path for AUVs.
The main contributions of this work are as follows:

e llustration of the feasibility of applying adaptive path planning using the DDQN
algorithm to plume tracing problems by numerical simulations.

e  Analysis of the superiority of the adaptive survey approach over the conventional
lawnmower approach in terms of survey efficiency for large-scale exploration.

The remainder of this paper is organized as follows. Section 2 presents the problem
formulation. The methods used to generate the adaptive survey path is addressed in
Section 3. Sections 4 and 5 present the simulation results and the experiments, respectively.
Section 6 concludes this work, and Section 7 presents the future work.

2. Problem Formulation

The goal of subsurface oil plume tracing is to characterize plumes by locating their
sources. An oil plume is defined as a spatial interval with hydrocarbon signals or signal sur-
rogates and can be identified by in situ sensing of the anomalies in hydrocarbon signals [7].
When AUVs are deployed for plume tracing, as shown in Figure 1, the initial attempts as
the first phase of the task follow sawtooth survey trajectories in the vertical dimension to
determine the depth of these neutrally buoyant plumes [32]. Surveys at a constant depth
are subsequently carried out in the second phase for plume source characterization. It
is assumed that AUVs operate in a local area at approximately constant longitude and
latitude, and a local Cartesian North-East-Down (NED) coordinate system is used.
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Figure 1. Schematics of AUV plume tracing phases: (a) Phase I: Sawtooth survey in the vertical plane;
(b) Phase II: Plume characterization in the horizontal plane.
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This work focuses on the second phase, when AUVs survey at a constant depth in
the water. It is assumed that no prior information about the location of the source and the
chemical concentration distribution is available. Since the endurance of AUVs is limited by
their onboard battery capacity, our aim is to develop an approach that can enable AUVs to
automatically plan their survey path and efficiently locate the plume source.

AUVs start to survey the region of interest immediately after deployment. The survey
path is formed by connecting successive waypoints. Therefore, waypoint determination
is essential in AUV path planning.. During the course of plume tracing, sensors such
as fluorometers are used to measure hydrocarbon concentrations [7] along AUVs’ track
lines from the current waypoint to the next one. The waypoints can be preplanned as in
the conventional lawnmower survey approach, but it is undoubtedly more favorable that
AUVs could autonomously and adaptively make an online decision on the waypoints to
facilitate plume tracing.

We consider the adaptive path planning problem in which an AUV is tasked with
locating the oil plume source. The hydrocarbon concentration f : R? x RT — R is dis-
tributed over the survey region D C R? in a time interval [0,t] C R*. The concentration
measured by the AUV at the waypoints can be written as:

c=f(pt)+e (1)
where p = [x,y]" is a vector of coordinates of the AUV’s position in the horizontal survey
plane, t is the time variable, and ¢ denotes the observation noise. The AUV’s survey path
consists of track lines between sequential waypoints. The key issue in AUV path planning
consists in the determination of the waypoints. It is essentially a data acquisition issue
in environment exploration. One method is to predict by spatiotemporal modeling [33].
However, it has not been fully understood how ocean processes at multiscales modulate
the transport of hydrocarbon in the ocean [34], and existing ocean circulation models may
exhibit poor performance due to lack of data and knowledge [35], while estimating from
surrogate models may require high computational cost as measurement data increase,
making such approaches not well suited for online waypoint determination. In this work,
we adopt a model-free reinforcement learning approach. AUVs collect the hydrocarbon
concentration at waypoints as an interaction with the marine environment and learn the
mapping from the distribution of the concentration to the location of the next waypoint.

3. Methods

This section presents an AUV kinematic model, Markov Decision Process (MDP) model,
and Double Deep Q-Network (DDQN) learning algorithm for AUV waypoint determination.

3.1. AUV Kinematic Model

AUVs move in the horizontal survey plane at a fixed depth in the second phase of
the plume tracing task. They are designed to travel at a constant speed, but their motion
is affected by ocean currents, as shown in Figure 2. The velocity of AUVs can thereby be
given by:

OAUV = Rgvconst + ¢ )

where vconst is the designed constant AUV velocity vector, v, is the velocity vector of the
ocean current, and Ry is the rotation matrix.
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Figure 2. AUV kinematic model in the NED system, where {x};, y;,} denotes the body-fixed reference
frame, « indicates the direction of the ocean current, and  denotes the angular difference between
the NED system and the body-fixed reference frame.

3.2. Markov Decision Process

Plume tracing using an AUV could be described as a sequential decision-making
problem. We formulated it as Markov Decision Processes (MDPs) with a 5-tuple of the
form (S, A,R,P,v):

e  State space S: the state space is defined as a set of data pairs that are composed of the
position of the AUV and the sensor measurement of the hydrocarbon concentration at
different locations.

e  Action space A: the action space is a set of all possible controls that the AUV can
execute to get to the next waypoints. In this work, it is assumed that the AUV is
traveling at a constant speed during the plume tracing process, and it decides the next
waypoint at constant time intervals. The action is then associated with the AUV’s
heading. The action space is discretized for calculation simplicity, though maneuvers
are continuous.

e Reward function R: the reward function, r : S x A — R, describes the feedback the
AUV obtains from the environment. The immediate reward the AUV receives as soon
as it completes one action is closely related to the measurements, and the reward
function is defined as:

Ry =h(s,s"), Ry € R General reward
R, € R*, Bonus of Success

R3; € R7, Reward on all transitions
R4y € R7, Out-of-region punishment

©)

where s and s’ denote current and next states, 4 is a customized reward function related to
plume concentrations, R; is a bonus reward for achieving the goal, R3 is related to AUV
energy consumption and is a negative reward at each transition, and Ry is also a negative
reward when AUVs moves out of the survey region.

e  State transition function P: the state transition function describes the dynamics of
the environment. In accordance with the fact that in real-world applications, no
prior information is available on the distribution of plume concentrations, the state
transition function is unknown in this case. AUVs need to learn from raw experience
through iterative interaction with the environment.

e  Discount rate y: the discount rate is a parameter. Its value lies between 0 and 1. It
indicates whether the AUV is “myopic”, i.e., whether it concerns only maximizing the
immediate reward or if it pays more attention to future overall benefit in the process
of plume tracing.
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3.3. DDQN Algorithm

The critical issue in AUV path planning for plume tracing is to locate the plume
source. Since prior information of the plume is not available, AUVs need to learn through
interactions with the marine environment. Using the MDP model, this learning process can
be interpreted as follows: the AUV selects an action at its current state, obtains feedback
from the environment, and updates its estimate of value function. It is expected that
an optimal strategy could be obtained through policy and value iteration. The DDQN
algorithm is developed based on the fundamental Q-learning algorithm. It is developed to
deal with the overestimating problem in the conventional Q-learning, where the Q-value
is updated based on estimates of future rewards. An overestimate would lead to wrong
decisions. Two networks are used in DDQN. One is used for action selection and the other
is for action evaluation.

Figure 3 shows a diagram of the DDQN algorithm for AUV path planning for plume
tracing. The algorithm starts from initialization of the action selection network and the
target network, and the experience replay buffer as well. In each iteration, the Q-values of
state—action pairs are updated. The corresponding actions are selected using the e—greedy
approach. The current state, the action taken, the reward received, and the next state
constitute one experience. Experiences are saved in the AUV experience replay buffer,
where training samples are extracted for Q-value estimation. The predicted Q-value is
calculated by the action selection network using the current state and action as the input,
while the target value is calculated by the target network using the next state and the
action associated with the maximal predicted Q-value obtained from the action selection
network. The loss is calculated using the predicted Q-values and the target values for
the sampled experiences. The weights of the action selection network are updated via
backpropagation. The target network’s weights are periodically updated to match the
action selection network’s weights.

Gians) -y AUV Experience r
Replay Buffer
z (s ars)
&oa 5
2 L 4
Pl'_-“'“‘f Tracing & Action Selection Update network R U
Enviroment L, Network parameters periodically A ‘
} 8 (I ; e 1
1 I » 1
M ' 1
| Estimated maximum : |
! : i
Gradient ' action @mgy _ L :
Descent .
- Estimate Q Target Q Value,
¥ value

Loss Function - e

Figure 3. DDQN algorithm for AUV path planning for plume tracing, where s and s’ denote
the current and the next states, respectively, a denotes the action taken, amax denotes the action
corresponding to the maximal Q-value output from the action selection network, r denotes the
immediate reward received after the action is executed, and {s,a,7,s'} denotes the experiences saved in
the AUV experience replay buffer.

4. Numerical Simulation and Results
4.1. Numerical Simulation Setup

To demonstrate the feasibility of the model-free reinforcement learning approach to
plume tracing problems, a series of numerical experiments were conducted. The numerical
experiments are designed based on current AUVs’ endurance, which ranges from hours
to days, and even months [8]. In the numerical experiments, the distribution of plume
concentration is designed as nearly the worst case, in which the distance between the
deployment location and the plume source is comparable to the AUV’s survey range. The
parameters used in the numerical experiments are listed in Table 1.
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Table 1. Numerical experiment setup.

Parameter Value
Survey region 30 km x 30 km
AUV survey endurance 36h
Total time step limit per survey 60
AUV speed 0.5m/s
Time step length 2000 s

In the numerical experiments, the AUV is deployed at the left lower corner of the
survey region and starts exploring the environment after deployment. It takes measurement
and makes decisions on the next waypoint at a constant time interval. The restriction on
the AUV’s survey endurance turns into an upper bound on the total time steps in the
experiments. The AUV is supposed to have eight possible actions at each state. It can move
in north, south, east, west, northeast, northwest, southeast, and southwest directions. Two
plume models are used to evaluate the performance of the presented approach in the cases
of steady and transient plumes.

For our numerical simulation employing DRL algorithms, we utilized a computational
setup comprising an Intel Core i5-12500H processor with 16 GB RAM and an NVIDIA RTX
3060 GPU. The operating system deployed was Ubuntu 20.04.4 LTS. We conducted our
experiments using Python 3.7, with PyTorch 1.11.0 as the deep learning framework. Our
models were trained on the OpenAl Gym environment, utilizing a convolutional neural
network architecture with a learning rate of 0.001.

4.2. Plume Models

The subsurface oil plumes resulted from an accidental blowout are distinct from natu-
ral hydrocarbon seep plumes. Natural seep plumes are usually continuous releases from
underwater sources, while the plumes formed in an accident are caused by instantaneous
ejection of oil into the water. Gaussian models are frequently used to predict the behavior
and impact of pollutants in marine environments [36]. In this work, a 2D Gaussian puff
model [37] is used to simulate the evolution of transient plumes.

According to the Gaussian puff model, plume concentrations can be expressed as the
solution of the transport equation as:

2
Y

c(x,y,t) = M ex 1 (x —oit)’ + <y_UCt)
V)= 4t /DD, TP 4| Dt Dyt

(4)

T
where M is the total mass of hydrocarbon contained in the puff, {U? , vt } is the vector of

ocean current velocity, and Dy and Dy are diffusion coefficients. The initial condition for
this solution is the peak with infinite concentration at position (0,0) and zero boundary
condition at infinity.

The subsurface oil plumes often have complex structures and are characterized by
many local extrema [38]. These plumes may also be discontinuous and patchy in a turbulent
marine environment with the application of dispersants. In this work, we use the Ackley
function to represent a steady plume with multiple local minima and one global maximum.
It can be expressed as:

x2 4 y2> —exp [COS(kx) Teostky)] 4o exp(1) ()

c(x,y) = —aexp <—b 7 >

where a, b, and k are formula coefficients.
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4.3. Steady Plume Tracing

In this section, we use the Ackley function to simulate a steady subsurface plume. It is
a static test function commonly used in optimization and representative of substance diffus-
ing away from a potent source [33]. Figure 4 shows a contour plot of the Ackley function.

Feature

Noth/km 0 0 °  Eagt m

Figure 4. Contour plot of the Ackley function as a steady plume. The picture is generated using
Equation (5) with the coefficients a = —36, b =2.2, and k = 7.

Autonomous surveying within an unknown region with multiple local minima and
maxima is not a trivial problem. AUVs may be trapped into local extrema and fail to
find the plume source. We consider three survey strategies with different initial sampling
conditions. The first strategy is to have 30 episodes of random walk, the second is to have
30 episodes of uniform sampling over the survey region, while the last one does not involve
any initial sampling. The asymptotic performances of the three learning processes are
indicated in Figures 5 and 6.
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Figure 5. Asymptotic performance of the DDQN algorithm in the averaged cumulative reward:
(a) survey strategy with 30 initial random sampling episodes; (b) survey strategy with 30 initial
uniform sampling episodes; (c) survey strategy without initial sampling.

The results show that, in the perspective of asymptotic performance, the adaptive path
planning approach performs comparably under the three survey strategies. The learning
processes are equivalently efficient. The initial uniform sampling strategy may outperform
the other two on stability during convergence. It is also observed that there is not much
deviation in the interim performance. Estimates are also made of the earliest episode
when the plume source is detected and the number of successful attempts within the first
one hundred episodes. The results are shown in Table 2. Comparison between the three
strategies shows that the third survey strategy, i.e., direct learning without initial sampling,
may be the optimal strategy, because initial sampling induces additional costs. Figure 7
shows an improvement on the survey path in the learning process when the AUV starts
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learning without any experience. It can be observed that as the learning process proceeds,
the continuous interaction with the environment enables the AUV to autonomously follow
a shorter path toward the plume source.

1.0 \/v\/_/—\/ 1.0 1.0

success rate
Success rate
Success rate

o
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N
o
N
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N

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Episode (x100) Episode (x100) Episode (x100)

(@) (b) (©)

Figure 6. Asymptotic performance of the DDON algorithm in the success rate: (a) survey strategy
with 30 initial random sampling episodes; (b) survey strategy with 30 initial uniform sampling
episodes; (c) survey strategy without initial sampling.

Table 2. Performance comparison between three initial sampling strategies *.

Initial Sampling Strategy Earliest Number of Successful Episodes
Successful Episode within the First 100 Attempts
Random 55th 21
Uniform 59th 19
w/o 53rd 23

* Results are averaged over one hundred runs.

30
—+— Episode 15
—»— Episode 45
—— Episode 65

Lawnmower 3 - =

—0.5

20

North /km

0 5 10 15 20 25 30
East /km
Figure 7. Evolution of the adaptive survey path w/o initial sampling. The AUV starts from the left
lower corner. The red, green, and black lines are survey paths generated by the proposed approach in
learning process, and the yellow line is the lawnmower path.

4.4. Transient Plume Tracing

In the transient case, the plume in the region of interest is generated by a Gaussian pull
model. It is assumed that the emission source is an instantaneous source located within the
survey region and the ocean current is represented by a uniform flow field. The diffusion
coefficient in the horizontal plane is adopted as of the order of 1 m?/s [39]. The parameters
used in the simulation are listed in Table 3.
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Table 3. Parameters in the case of transient plume tracing.

Parameter Value Note

Ocean current velocity 0.1m/s in the positive horizontal direction
Diffusion coefficient 1m?/s horizontal

The results from the case of steady plume tracing show that initial sampling may
not be as beneficial as we believed. In transient plume tracing, we switched the survey
strategy and let the AUV learn from the scratch. A fast convergence is observed in Figure 8,
indicating an efficient learning process. It shows that the AUV can learn an optimal path to
the plume source after around two hundred attempts. It may seem rather time-consuming
at first glance, but an inspiring clue is found when we take a closer look into the first one
hundred attempts. Repetitive runs show that the AUV arrives at a proximity to the plume
source within about 20 surveys. Figure 9 illustrates one instance of AUV adaptive survey
process. It presents the first successful attempt to locate the plume source in one run. The
source locating process is illustrated by time evolution.

800 10r V \/V\-/W-
700 [
g 08
g 600f,
e
[0}
é’ 500 H T o06H
3 2
£ 400 I3
3 2 04
g 300
(o]
o
g 200
x 0.2
100
0 10 20 30 40 50 0 10 20 30 40 50
Episode (x100) Episode (x100)
(a) (b)

Figure 8. Asymptotic performance of the DDQN algorithm in transient plume tracing: (a) aver-
aged cumulative reward, indicating the average over every one hundred episodes; (b) success rate,
indicating the rate of successfully arriving at the plume source over every one hundred episodes.
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Figure 9. Cont.
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Figure 9. Transient plume tracing using adaptive path planning and lawnmower survey pattern:
(a) Stage 1: 10 time steps (~5.5 h); (b) Stage 2: 20 time steps (~11 h); (c) Stage 3: 30 time steps (~16.5 h);
(d) Stage 4: 42 time steps (~23 h).

4.5. Learning Performance

Learning performance is crucial for applying DRL approaches to plume source tracing
problems. Using DRL approaches, AUVs can learn from interactions with ocean environ-
ments and gain knowledge of the plume under investigation. The learning performance of
DRL algorithms is closely related to survey efficiency.

In this section, comparative investigation is conducted between the developed DDQN
algorithm and the Proximal Policy Optimization (PPO) algorithm. PPO is a widely em-
ployed strategy optimization algorithm in the realm of reinforcement learning [40]. It is
a policy gradient-based approach, which is different to value function-based algorithms
like DDQN. The PPO framework is based on actor—critic architecture. The actor network
is responsible for generating actions, while the critic network evaluates the performance
of the agent. The learning performance of the DDQN and PPO algorithms on the plume
tracing examples are compared in Table 4. These results are obtained using the same
reward structure.

Table 4. Performance of DDQN and PPO on the steady and transient plume tracing problems *.

Steady Plume Transit Plume
DDQN PPO DDQN PPO
Success rate 100% 100% 100% 100%
First successful episode ~50th 3000th ~20th 1800th
Convergence speed ~300 eps ~2.8 x 10* eps ~400 eps ~3.7 x 10* eps

* Results are averaged over one hundred runs.

In Table 4, the high success rate of reaching the global extreme value in the two plume
structures indicates that both DDQN and PPO can be used to find a survey path to the
plume source. Itis also indicated that the DDQN algorithm outperforms the PPO algorithm
in the learning efficiency. The PPO algorithm converges much slower than the DDQN
algorithm, roughly in two orders of magnitude. Similar results can be inferred from the data
of the first successful episode. It is observed that the first successful episode obtained by the
DDON algorithm also appears earlier in two orders of magnitude than the PPO algorithm.

The difference in the algorithm performance consists in their learning mechanism.
In the DDQN algorithm, the action value is evaluated through the target network and
the optimal action is selected using the action selection network. While in the PPO algo-
rithm, the policy function is directly optimized. The policy is represented by a probability
distribution over possible actions at the current state. This requires a large amount of
training data to achieve good performance. Therefore, from a cost-effectiveness point of
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view, the DDQN algorithm would be more suitable for plume source tracing problems in
engineering practice.

4.6. Comparison with Lawnmower Approach

Lawnmower pattern is a canonical survey approach commonly used in engineering
practice to achieve full coverage over a studied region. It is used in oceanographic observa-
tion based on previous knowledge on oceanic phenomena, and adequate representation of
the studied region can often be obtained [41]. However, it may not be a good option for
plume source tracing using AUVs because prior knowledge of the plume concentration
is not available, and due to energy limitation, AUVs may not be able to complete a full
coverage survey, especially over a large survey region.

This section presents a comparison between the proposed adaptive approach and the
lawnmower approach. In both cases of the steady and transit plumes, survey paths
generated by the adaptive approach and the lawnmower approach are presented in
Figures 7 and 9, respectively. These results indicate that the adaptive path planning ap-
proach eventually provides a feasible solution to the plume source tracing problem, but it
may take much time to learn from the interactions with the environment. As indicated in
the results presented in Sections 4.3 and 4.4, about 50 episodes are required to detect the
source of the steady plume represented by the Ackley function, and 20 episodes are needed
for the Gaussian transit plume. In the case of the lawnmower survey pattern, we suppose
a survey range of 60 km and a 1 km distance between the track lines for each operation,
corresponding to 60 time steps in the numerical simulation. The individual operation time
can then be obtained by a simple calculation as 33 h and 20 min. A total of 15 successive
operations would be required to achieve full coverage over the survey region. When only
one AUV is utilized, the total survey time is an accumulation of the duration of every
individual operation. The comparison on the total survey time required by the adaptive
approach and the lawnmower approach is presented in Figure 10. It is apparent that the
lawnmower survey pattern would be a better strategy when only one AUV is available,
especially when the plume structure is complex.

1800 A
1600 -
1400 A
1200 A
1000 A
800 A ® Adaptive approach

600 A o
M ¥ Lawnmower approach

400 1 w { "‘ K i— i
_ | ‘

200 1 BB 5 | i ’

3i H S E S
1 3 4 5 10 15
Number of AUVs

Total Survey Time /hr

Figure 10. Total survey time needed with different number of AUVs used in the steady plume source
tracing problem. The time for individual operation in the lawnmower approach and the adaptive
approach is setup as 60 time steps in the numerical simulation or 33 h and 20 min according to the
preset vehicle endurance. Note that when one AUV is utilized, the battery charging time is ignored
in the calculation.

For large-scale or long-range surveys, as indicated in our presented example consider-
ing the capability of the AUV and the requirement of the survey task, it would be more
time-effective to use multiple AUVs. Take the steady plume tracing problem demonstrated
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in Section 4.3 as an example. When the lawnmower survey pattern is adopted, AUVs
operate in a relay mode and the total survey time is estimated as 500 h, while in the case of
the adaptive survey approach, the total survey time is calculated based on the estimate of
the first successful survey, as presented in Table 1. Here, for simple calculation, we suppose
50 individual surveys are needed and each survey is also restricted to a duration of 33 h
and 20 min. Because multiple AUVs can operate in a parallel mode, the survey efficiency
increases as the number of AUVs simultaneously used increases. It can be safely concluded
from the comparison in Figure 10 that the adaptive survey approach is more efficient than
the lawnmower approach when more than three AUVs operate in parallel.

5. Experiment with AGV

This section presents the experiment used to demonstrate the feasibility of using the
adaptive path planning algorithm for autonomous robot navigation to locate the global
extreme in a static environment. In the experiment, a TurtleBot 2 robot with Kobuki base,
as shown in Figure 11, was deployed to locate the extreme point on a 3 m x 3 m map.
The map was printed with the same contour plot of the Ackley environment feature as
presented in the numerical simulation in Section 4.4. The robot was equipped with a
Microsoft Kinect V1 Xbox 360 (Redmond, WA, USA), which relayed real-time visual data
to a remote computer. This computer, running Ubuntu 14.04 and equipped with an AMD
Ryzen 7 5800H processor (Surry Hills, NSW, Australia), 16 GB of RAM, and an NVIDIA
RTX 3060 GPU, processed the data using the developed DDQN algorithm implemented in
PyTorch 1.11.0. The TurtleBot 2 robot and the remote computer were configured to set up
communications on the same network. The IP address was used to established the ROS
environment variable for communication.

L e v = e |

(b)

Figure 11. TurtleBot 2 and the map used in the experiment: (a) TurtleBot 2; (b) the map printed with

a contour plot of the Ackley function with the coefficients a = —36, b = 2.2, and k = . The global
maximum is indicated with a color of bright yellow.

In the experiment, the robot moved with a step size of 100 mm, and the maximum
number of steps was set as 60. The global extreme locating task is believed to be successfully
completed if within 60 steps, the robot arrives at a location that is less than 100 mm from the
destination; otherwise, it fails. Figure 12 shows the autonomous navigation process using
the proposed adaptive path planning approach, and Table 5 lists the experimental results.
It took the robot 36 steps to arrive to the proximity of the global extreme. The actual robot
trajectory and the theoretical optimal path are demonstrated in Figure 13. The experimental
outcomes showed that the robot could autonomously move to the proximity of the global
maximum using the proposed adaptive path planning approach. The distance between
the robot’s final location and the goal is around 94 mm. The deviation between the robot’s
trajectory and the theoretical path may be a result of actuation error and sensor uncertainty.
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Figure 12. Snapshots of TurtleBot 2 robot autonomous navigation in the static Ackley environment.

Table 5. Results of TurtleBot 2 robot experiment.

Parameter Preset Value Experimental Result Qualified (Yes/No)
Number of steps 60 36 Yes
Distance to the goal (mm) 100 94 Yes
301
251
20
E.5l
>
—— Theoretical Path
10 —— Robot Trajectory
% Global Maximum
W Start Point
0.5
0 . . . . . .
0 0.5 1.0 1.5 2.0 25 3.0

X/m
Figure 13. Robot trajectory in the static Ackley environment.

6. Conclusions

In this paper, we present an adaptive path planning approach for AUVs to au-
tonomously locate the subsurface plume source. The plume tracing problem is analogous to
unknown environment exploration. The similarity consists in the lack of prior knowledge
on the interest of concern. This presented approach is developed in the reinforcement learn-
ing paradigm, using a model-free DDQN algorithm. AUVs could learn from interactions
with marine environments and acquire the mapping from a state to an optimal maneuver.
Although the application of reinforcement learning approaches in real-world applications
may sometimes seem impractical because it usually takes considerable time for the agent
to learn the optimal strategy, it is indicated in our preliminary results that this learning
paradigm may be appropriate for the plume tracing problem because the goal is to locate
the source, which may be accomplished before the training process is completed. It is
also indicated that adaptive path planning approach developed in the deep reinforcement
learning framework can be more efficient than the conventional lawnmower survey pattern
in large-scale exploration when multiple AUVs operate in a parallel mode.

7. Future Work

AUVs are well suited for unknown environment exploration. They could operate
autonomously in remote areas that might be hostile or dangerous to human beings. Im-
plementation of artificial intelligent algorithms could enable AUVs to make intelligent
decisions and incorporation of the adverse conditions into these algorithms could eventu-
ally achieve an increase in the degree of autonomy. This work presents an adaptive path
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planning approach for plume tracing problems. To apply this approach in engineering
practice, the following aspects will be investigated in the future work.

e  Dynamics of ocean currents. Ocean currents are the major environmental factors that
affect AUVs’ motion and path planning. In this work, we consider a simplified case of
uniform flow field. The dynamics of ocean currents will be included into the algorithm
by sophisticated modeling or oceanographic data for more accurate estimation.

e  Obstacle avoidance. Underwater obstacles such as subsea terrain features and man-
made structures can pose navigation hazards to AUVs. Strategies will be designed for
collision avoidance in the reinforcement learning framework.

e  Sensor and actuation errors. Variations in water density, temperature, and salinity can
affect acoustic communication and influence the performance of sensors for navigation.
In this work, we model the AUV decision-making processes as MDPs. The MDP
model will be replaced by Partially Observable Markov Decision Process (POMDP) to
represent influence of these uncertainties.

e AUV field trials. Field trials play an important role in path planning algorithm testing.
The algorithm performance needs to be evaluated and the models used within can
then be improved using measurement and data from underwater experiments.
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