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Abstract

This study investigates the factors influencing specialization in artificial intelligence (AI) tech-

nology, a critical element of national competitiveness. We utilized a revealed comparative

advantage matrix to evaluate technological specialization across countries and employed a

three-way fixed-effect panel logit model to examine the relationship between AI specializa-

tion and its determinants. The results indicate that the development of AI technology is

strongly contingent on a nation’s pre-existing technological capabilities, which significantly

affect AI specialization in emerging domains. Additionally, this study reveals that scientific

knowledge has a positive impact on technological specialization, highlighting the necessity

of integrating scientific advancements with technological sectors. Although complex tech-

nologies positively influence AI specialization, their effect is less pronounced than that of sci-

entific knowledge. This suggests that in rapidly advancing fields, such as AI, incorporating

new scientific knowledge into related industries may be more advantageous than simply

advancing existing technologies to outpace competitors. This insight points nations toward

enhancing AI competitiveness in new areas, emphasizing the vital importance of both scien-

tific and technological capabilities, and the integration of novel AI knowledge with estab-

lished sectors. This research offers critical guidance for policymakers in less technologically

and economically developed countries, as these nations may not have the technological

infrastructure required to foster AI specialization through increased technical complexity.

Introduction

In recent years, intensifying global competition to achieve national competitiveness in artificial

intelligence (AI) technology has significantly increased interest in technological specialization

[1, 2]. Technological specialization is defined as a country’s emphasis on producing and devel-

oping specific technologies when that country has a comparative advantage. This competitive

environment has resulted in a significant increase in academic research and patent publica-

tions on AI. From 1960 to early 2018, approximately 340,000 AI-related patent families and

over 1.6 million scientific papers were published, with the number of papers approximately 4.7
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times that of patents [3]. This disproportionate growth raises an essential question: Does an

increase in scientific publications significantly influence a nation’s technological specialization

in AI?

In the current knowledge-driven economy, which is characterized by intense competition

among nations for technological supremacy, the development of new technologies through

innovative scientific concepts has become increasingly vital. However, national-level explora-

tion of this phenomenon has been limited, with a few significant exceptions, such as Catalan

et al.’s study [4]. This research uniquely points out that previous studies have typically focused

on technologies or scientific areas in isolation, neglecting to explore their interconnection.

Specifically, they investigate whether a nation’s intrinsic scientific capabilities can determine

its potential for technological specialization. Traditionally, research has focused on regional

aspects of knowledge spillover by examining the transformation of scientific knowledge into

technological innovations [5–7]. University research generally fosters innovation within its

region, a trend largely due to knowledge spillover confined by geographical boundaries, as

Jaffe et al. [8] observed.

This study investigated the intersection of scientific knowledge and technological speciali-

zation in AI at the national level. We analyzed data on AI-related scholarly articles and patents

from 170 countries over a span of four decades, from 1980 to 2019. This timeframe is particu-

larly significant, as it includes key historical events that have led to recent breakthroughs in the

evolution of AI technology. For example, it covers the period following the ’AI winter,’ a phase

in the late 1980s and early 1990s characterized by reduced interest and investment in AI that

coincided with the market collapse of early AI technologies such as expert systems and

machine learning algorithms. The late 1990s witnessed a resurgence of optimism in relation to

AI, as evidenced by a surge in related publications, which were often linked to advancements

in machine learning and neural networks [9]. The early 2000s saw a significant increase in AI

patent filings, reflecting increased commercial attention and major technological break-

throughs, particularly in the realm of deep learning techniques [10], which were pivotal in the

development of AI [11].

Our dataset also includes pivotal research and patents related to Google Brain’s Trans-

former, as introduced by Vaswani et al. [12] in ’Attention Is All You Need.’ This discovery

marked a significant breakthrough in natural language processing and laid the groundwork

for advanced language models such as ChatGPT. This period was crucial in the evolution of

AI, particularly in language models, as evidenced by the explosion of research and technologi-

cal applications stemming from this model [13, 14]. These developments have profoundly

influenced the contemporary AI landscape, underscoring the importance of groundbreaking

scientific discoveries in driving technological advancement and specialization.

Through the analysis of a comprehensive dataset, this study aims to shed light on how the

expanding corpus of scientific knowledge has impacted the technological specialization of

countries in AI-related fields. By considering both the historical and contemporary contexts of

AI development, this approach seeks to elucidate the intricate relationship between scientific

progress and technological innovation in the rapidly evolving domain of AI. Such an analysis

offers a nuanced understanding of the dynamic interplay between these two critical elements,

contributing significantly to our understanding of the developmental trajectory of AI.

Our findings indicate that both scientific and technological capabilities contribute signifi-

cantly to a country’s AI specialization. Notably, scientific knowledge that aligns closely with a

country’s existing technological strengths tends to positively affect its technological compara-

tive advantage, implying beneficial knowledge spillover from science to technology when there

is a certain level of alignment between the two domains. Furthermore, the influence of
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scientific capabilities on AI specialization appears to be more pronounced than that of techno-

logical complexity, although complex technologies contribute positively to AI specialization.

The insight derived from this study is particularly pertinent to policymakers in developing

countries, where technological resources may be more constrained. In these technologically

and economically less developed nations, focusing on gaining a comparative advantage in sec-

tors closely linked to the latest AI knowledge presents a more feasible strategy than attempting

to emulate the approach of advanced countries, which often involves complicating existing

technologies to remain ahead of competitors. This underscores the critical need to integrate

advanced scientific knowledge into industries that are strategically important for AI specializa-

tion. Adopting this strategy is essential for countries striving to establish or strengthen their

niche in the fast-paced AI landscape. In this arena, where both scientific and technological

breakthroughs are key to maintaining a competitive edge, a focused approach to leverage sci-

entific advancements can offer significant strategic benefits.

Our study marks a significant advancement by transitioning from a unidimensional

approach to a multidimensional perspective and by intertwining scientific and technological

knowledge spaces. We utilized the multilayer network approach proposed by Pugliese et al.

[15], leveraging co-occurrence data to map out the interactions within the national innovation

system more effectively. This method surpasses the boundaries of conventional approaches by

accounting for the diverse and concurrent interactions between scientific research and techno-

logical economic activities [4, 16]. This comprehensive perspective equips policymakers with

holistic insight and facilitates the development of integrated AI strategies that acknowledge the

interdependent nature of research and innovation. In a rapidly evolving technological land-

scape, adopting a strategy that leverages the most current knowledge to extend comparative

advantage into new areas—rather than merely complicating existing technologies to deter

competitors—has become increasingly vital. The findings of this study provide valuable guid-

ance for policymakers in crafting AI technology policies, underscoring the necessity for a mul-

tidimensional approach that addresses both science and technology simultaneously.

Literature review

RCA-based technology specialization

Technology specialization refers to a country that focuses on its production and expertise in

specific technologies in regard to which it has a comparative advantage. Countries’ economic

prosperity is closely linked to their specialization in specific technologies, products, and skills.

This principle, dating back to the work of Marshall [17] and Jacobs [18], which was further

explored by Glaeser et al. [19], emphasizes the significance of specialization. Balassa [20] intro-

duced the concept of comparative advantage, suggesting that a country excels in producing a

specific product when its production surpasses the global average. This concept has led to the

development of the Revealed Comparative Advantage (RCA) index, a pivotal economic mea-

sure used to assess a country’s competitive edge in various industries or trades. The RCA index

calculates the proportion of a country’s exports of a particular good or service relative to its

share of global exports. An RCA greater than 1 indicates a comparative advantage, signifying

greater proficiency in producing that good or service compared with other countries.

The RCA index, traditionally used to assess product specialization, is also highly applicable

to technological specialization. Numerous recent studies have employed RCA to gauge techno-

logical competitiveness at various levels, including regional, city, and national [16, 21–24]. Par-

ticularly noteworthy is the work of Catalan et al. [4], who extended the RCA concept to

measure the relative advantage of technologies across multiple countries engaged in their

development. They investigated the influence of a country’s scientific knowledge based on its
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capacity to develop new technologies and found a positive correlation between a strong scien-

tific knowledge base in a particular domain and a country’s ability to innovate in that domain.

This finding underscores the significant role that a country’s scientific infrastructure plays in

driving technological advancement.

The process of technological specialization is path-dependent, meaning that existing capabil-

ities determine the trajectory of technology specialization. A country’s transition toward new

technologies is heavily influenced by its existing technological and industrial capabilities [25,

26]. Therefore, countries tend to specialize in technologies related to their pre-existing capabili-

ties. This is consistent with the principle of relatedness, which suggests that countries tend to

diversify into areas related to their current technological and industrial capabilities [21, 23, 27].

Boschma et al. [28] demonstrated the path-dependent nature of technology evolution, including

specialization and decline, in U.S. cities. They expanded RCA’s utility by introducing ENTRY

and EXIT metrics using patent class relatedness to predict technological shifts. Their results sug-

gested that regions often develop industries akin to their existing ones. They found that a 10%

increase in technological relatedness increases the likelihood of adopting a new technology

(ENTRY) by 30% and reduces the obsolescence (EXIT) of current technologies by 8%.

Factors influencing technological specialization extend beyond mere technological related-

ness to include technological complexity. The significance of technological complexity in bol-

stering specialization is substantial. Profound and intricate knowledge in a specific field

positively influences the introduction of novel technologies, thereby reinforcing specialization

[29, 30]. Additionally, this complexity is often correlated with enhanced economic value

owing to its geographic concentration and the difficulties it presents for widespread dissemi-

nation, which poses challenges for other countries in terms of replication and imitation [8, 31].

As such, nations tend to exhibit distinct patterns of specialization along their developmental

trajectories, gravitating toward more complex and economically valuable technologies to rap-

idly monopolize economic benefits [22]. The aggregation of complex knowledge in specific

countries has led to the emergence of more advanced and sophisticated export patterns. As

countries progress, they refine and augment their distinctive technological capabilities [32,

33], emphasizing the pivotal role of technological complexity in shaping and driving the trajec-

tory of technological development.

However, excessive specialization in a particular technology carries the risk of technological

lock-in [34]. This occurs when an economy becomes excessively reliant on a specific technol-

ogy, leading to significant transition costs or barriers to adopting new technologies. The risk of

technological lock-in is heightened when the focus is on increasing the complexity of a specific

technology, as this can lead to path dependence, with future technological developments

heavily influenced by past decisions [35]. This scenario limits flexibility and adaptability,

potentially hindering economic progress and innovation [34–36].

Although RCA-based measures of technological specialization are not flawless, they offer

considerable benefits. The ENTRY and EXIT indicators derived from RCA do not directly

measure entrance or exit from a specific technological field. Rather, they assess the compara-

tive advantage in that domain, thereby adding robustness and minimizing the impact of exter-

nal volatility [16, 28, 37]. When analyzing patent data to gauge technological specialization,

using RCA-based ENTRY indicators is more advantageous than simply counting patents. This

approach counters the variability inherent in patent data, which can be influenced by factors

such as changes in patent laws, varying patenting behaviors across countries, and technological

shifts [38]. By focusing on relative strengths rather than absolute patent counts, the RCA-

based specialization measure effectively addresses these variabilities, aligning with economic

complexity theory [37].
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Despite its limitations, the RCA-based ENTRY metric is invaluable for quantifying techno-

logical specialization. Its effectiveness lies in evaluating specialization through relative compar-

isons among countries rather than relying solely on the absolute number of specific

technologies. This comparative approach provides a more resilient and nuanced understand-

ing of the technological strengths and weaknesses of a nation. It yields insight that is less

affected by external factors, such as patenting activity fluctuations or global market changes,

thus offering a more stable and insightful perspective on technological specialization.

AI specialization in the science-technology nexus

Exploring AI specialization through the science-technology nexus entails a deep exploration of

how scientific research underpins technological progress in AI. This relationship is reciprocal;

AI technological breakthroughs often arise from foundational scientific research, and techno-

logical advances pave the way for new scientific inquiries. Understanding this interplay offers

valuable insight into the dynamics that drive AI specialization, the birth of novel AI technolo-

gies, and their sector-wide adoption.

The role of science in fostering new technologies with a comparative edge is crucial in

today’s knowledge economy, which is characterized by fierce global competition for techno-

logical leadership. However, this crucial aspect has been explored less at the country level

despite its significance in the regional dynamics of knowledge spillover and the transformation

of scientific knowledge into technological innovations [8]. This spillover, often geographically

bound to areas surrounding universities and research institutes, highlights the importance of

local knowledge in innovation processes [5–7].

Research suggests that knowledge spillovers in the domain of AI tend to be localized, sup-

porting the need for targeted subnational and national AI development policies [39]. Notable

examples include AI powerhouses such as DeepMind in London and the Vector Institute in

Toronto, where their leading researchers were based [40]. This phenomenon of AI expertise

clustering in certain regions is a global trend, with innovation hubs emerging in cities such as

Silicon Valley, Berlin, Seattle, London, Boston, Shanghai, Toronto, and Montreal [40]. Several

factors drive this trend, including the rapid pace of scientific advancements in AI. Companies

aim to promptly integrate the latest scientific findings into their technologies to shorten the time

required for scientific knowledge to be transformed into technological applications [41, 42].

However, the transition from scientific theory to the technological application of AI has not

always been swift. Alan Turing’s 1950 concept of a ’thinking machine’ laid the groundwork for

AI, but it took decades for this concept to influence tangible technological advancements due

to a series of progressions and setbacks marked by the varying prominence of different tech-

nologies [43]. The advent of deep learning, particularly following the significant contributions

of Hinton et al. in 2012, marked a turning point in the evolution of AI [10, 44]. Currently, AI

is recognized as a critical technology across various industries, with machine-learning methods

proving particularly transformative [45].

The progression of AI technologies is closely tied to specific scientific breakthroughs. For

example, the integration of deep learning into numerous computer science disciplines has

accelerated the advancement of AI [39]. The broadening applicability and exponential devel-

opment of AI are evidenced by the rapid increase in academic publications and patent registra-

tions, which has been particularly noticeable since the early 21st century [11, 39]. This surge is

a result of sustained research commitment and continual innovation, which have been main-

tained even during periods of skepticism [43].

Global rivalry in AI specialization has escalated, with the US and China having an edge

owing to their access to substantial datasets. Stringent European data laws may impede the

PLOS ONE AI technology specialization and national competitiveness

PLOS ONE | https://doi.org/10.1371/journal.pone.0301091 April 4, 2024 5 / 26

https://doi.org/10.1371/journal.pone.0301091


region’s ability to develop sophisticated AI [39, 46]. China, the USA, Canada, and other Asian

countries such as Singapore and Korea, have emerged as global AI leaders [39]. International

competition has led to an increase in both academic and patent publications related to AI.

Between 1960 and early 2018, nearly 340,000 AI-related patent families and over 1.6 million

scientific papers were published. The number of papers published is approximately 4.7 times

the number of patents [3]. The boom in the development of AI-related scientific papers began

approximately 10 years prior to patents, with an average annual growth rate of 8 percent

between 1996 and 2001 [3].

While it might seem logical for an increase in scientific and technological knowledge to

lead to a nation’s specialization in AI, the situation is more nuanced. For example, AI patent-

ing is predominantly concentrated among a small number of large firms, indicating that sim-

ply increasing knowledge does not necessarily lead to widespread AI specialization [47].

Furthermore, the diversity of AI research has stagnated, adding complexity to the relationship

between knowledge accumulation and AI specialization [47].

The situation in less technologically and economically developed countries with limited AI-

related technical capabilities is particularly challenging. Despite the importance of understand-

ing how these countries specialize in AI, this field has not received sufficient attention. Liu

et al. [41] argue that for nations with lower levels of technological development, strategies

should be formulated to foster AI development and application, promoting knowledge crea-

tion and technology spillover effects. They provided evidence that the impact of AI on techno-

logical innovation varies across sectors, with AI exerting a more significant influence on low-

tech sectors in China. This suggests that even countries with limited technological advance-

ment can harness AI to catalyze innovation, particularly in less complex sectors.

A multidimensional approach

By adopting a multidimensional approach to understand the interaction between scientific

research and technological development, various studies have analyzed publication-patent

citations [48, 49]. This method involves examining data on citations in local inventors’ patents

of scientific publications by researchers in the same region, offering insight into the science-

technology relationship. Extensive exploration of this relationship has shown the positive

influence of scientific publications on patenting, as evidenced by several studies [31, 50].

However, this approach has limitations, particularly in understanding multidimensionality

through paper-patent citation links or volume comparisons. A key challenge is the discrepancy

in citation frequency between patents and scientific publications, which hinders the accurate

capture of knowledge flow [51]. This indicates that paper-patent citations may not fully cap-

ture the comparative advantage in the multidimensional knowledge space among countries.

Moreover, a rapid increase in scientific and technological knowledge does not always translate

into significant advancements. Recent research suggests stagnation in progress across various

fields, with papers and patents becoming less impactful in guiding science and technology in

new directions [52]. Thus, comparing the quantity of patents and papers also falls short in

attempting to understand spatial spillover.

To address these limitations, Pugliese et al. [15] proposed a novel, multilayered approach to

connect scientific, technological, and productive capacity. Expanding on the conditional prob-

ability model developed by Hidalgo et al. [32], they devised a tri-layered network to capture

interactions among scientific publications, patenting, and industrial production across sectors

while incorporating time lags. This method is based on the concept of relatedness, which is the

statistically significant co-occurrence of two activities within the same country at a specific

time. This framework establishes connections across different activity layers, including

PLOS ONE AI technology specialization and national competitiveness

PLOS ONE | https://doi.org/10.1371/journal.pone.0301091 April 4, 2024 6 / 26

https://doi.org/10.1371/journal.pone.0301091


scientific fields, technological sectors, and economic production, and offers insight into the

capabilities and timelines required to convert technological expertise into economic wealth

and scientific innovation.

Catalan et al. [4] furthered this multidimensional approach by introducing the ’cross-prox-

imity’ concept, in which they define scientific and technological cross-density as the average

proximity of potential new technologies to a country’s existing scientific and technological

portfolio, and examining the influence of endogenous scientific capabilities on technological

diversification. Their two-stage method, applied to data from 182 countries over the period of

1988–2014, began with the construction of the ’science and technology cross-space’ network,

linking knowledge and technologies based on co-occurrence values. They then assessed the

impact of scientific-technological cross-density and technological density on technological

diversification at the country level. Their results showed that the proximity of new technology

to a country’s scientific portfolio positively affects its probability of adoption. They also discov-

ered that the effect of technological density on diversification surpassed that of scientific and

technological density combined.

Moreover, the optimal cognitive proximity theory of the multidimensional space of science

and technology suggests that knowledge transfer may be impeded if the cognitive proximity

between two entities is either too low or too similar [53]. This is because substantial cognitive

distance may impede effective communication, whereas minimal cognitive distance may result

in lock-in, preventing learning from external sources.

Despite these advancements, these studies may not have entirely addressed the diverse

effects of different knowledge characteristics. They align with traditional economic views that

consider technologies to be uniform drivers of economic growth [54, 55]. Conversely, general-

purpose technologies such as AI demonstrate high self-productivity, boosting productivity and

innovation processes and significantly contributing to economic growth [40, 56–58]. The dif-

fusion potential of AI technologies enables them to permeate a broad and continuously

expanding range of applications. Additionally, their complementary nature allows them to

augment and enhance products and processes across various industries [58, 59]. This high-

lights the need to investigate how general-purpose technologies such as AI exhibit comple-

mentary effects in a multidimensional space.

Data and methodology

Data

AI-related patents. The identification of AI technologies is challenging because of the

dynamic nature of AI concepts and their broad application across various industries, including

autonomous vehicles, drug discovery, and robotics [3, 60]. Consequently, many researchers

have proposed diverse methods for extracting information from patents and articles [3, 58, 61–

63]. Several strategies for classifying AI technologies have been suggested, such as keyword-

based searches of the titles and abstracts of documents such as patents, proceedings, and studies

[63, 64]; categorizing AI patents using the Cooperative Patent Classification (CPC) system [62];

and combining key phrases with CPC symbols [61]. These methods can be broadly grouped

into key-phrase-based, CPC-based, and hybrid approaches, each with its own advantages and

limitations. CPC-based methods are noted for their weak genal-purpose technology (GPT) fea-

tures such as growth, generality, and complementarity [64], and hybrid approaches exhibit sim-

ilar characteristics. In contrast, exact keyword matching demonstrates robust growth and

generality in technology [64]. In this study, we employed a key-phrase-based method and

assessed its robustness by comparing the results with alternative approaches, including the
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CPC-only method, a combination of keywords and CPC codes, and the use of keywords from

titles only. S1 Table in the S1 File provides a detailed overview of these methods.

This study utilizes patents registered with the United States Patent and Trademark Office

(USPTO), which we sourced from the European Patent Office’s (EPO) PATSTAT database

[65]. The focus on USPTO patents—and the exclusion of patent families from offices such as

the Japanese Patent Office (JPO), Korean Intellectual Property Office (KIPO), and China

National Intellectual Property Administration (CNIPA)—is due to the unique advantages of

the USPTO. First, the USPTO adheres to the Cooperative Patent Classification (CPC) system,

a continuously evolving framework that systematically categorizes emerging technologies,

including AI, into over 260,000 categories [66]. Second, the lack of a unified classification sys-

tem for AI-related patent applications across jurisdictions means that each country’s patent

management system and standards can lead to data inconsistencies when integrating patents

globally [60]. Additionally, patent applicants often file in multiple jurisdictions, potentially

leading to duplicate records and overrepresentation of patents from certain countries [60].

Therefore, the USPTO is widely used in research, though it does not encompass innovation

activities in all countries [4, 67, 68].

In this study, we collected and refined USPTO patents from the PATSTAT 2022 Spring ver-

sion, a globally recognized database for bibliographic patent information maintained by the

EPO, following specific criteria [65]. AI-related patent applications were initially gathered using

AI-relevant keywords from the titles and abstracts of the patent bibliographic information. The

approach for selecting AI-related keywords suggested by WIPO [3] was adopted to ensure high

relevance to AI (for details on AI-related keywords and CPCs, refer to S1 Table in the S1 File).

When collecting patent applications, we limited the documents to invention patents. Utility

models and other non-invention patents were excluded by filtering the PATSTAT ’ipr_type’

field to include only ’PI.’ Applicant and inventor names were sourced from the PATSTAT

’Standardised Name’ field (psn_name), and the country information for applicants and inven-

tors came from the ’person_ctry_code’ field in PATSTAT, with additional processing due to

incomplete data coverage. In cases in which a patent inventor was affiliated with institutions in

two countries, the patent applications were counted separately for each country without con-

sidering the inventor’s proportional contribution. However, no country was assigned when

country information was missing. Notably, data for China are underrepresented owing to

inconsistencies in applicant and inventor information for Chinese patents in the PATSTAT

database, as identified by the UKIPO [60].

After excluding subclasses with no registered patents, 654 subclasses and 407,386 patents

were analyzed. To examine temporal patterns, we split the data into nine 5-year snapshots. The

data were organized by country (204 countries), time period (eight 5-year intervals), and tech-

nology subclass (four-digit CPC codes), resulting in a (204 × 8 × 654) invention patent matrix.

AI-related papers. This study analyzed scientific publications from the Web of Science

(WoS) Core Collection from 1980 to 2019 to construct a scientific knowledge space. The WoS

database includes three primary citation indices: The Science Citation Index Expanded (SCIE),

Social Sciences Citation Index (SSCI), and Arts and Humanities Citation Index (AHCI). Our

analysis centered on the SCIE sections of the WoS Core Collection, which span five major disci-

plines: The Arts and Humanities, the Life Sciences and Biomedicine, the Physical Sciences, the

Social Sciences, and Technology. In line with the methodology described by Catalan et al. [4],

we targeted articles in the SCIE that were directly related to technological inventions in AI.

Consequently, this study excluded the SSCI and AHCI sections. Furthermore, we confined our

dataset to journal articles and excluded conference proceedings, reviews, and books. Publica-

tions lacking an institutional address were also excluded from our analysis.
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The WoS bibliographic database enables the classification of papers based on the authors’

institutional affiliations and journal research categories [69]. In this system, publications are

associated with countries using the institutional addresses provided by the authors, and each

author’s country is considered to contribute equally to the publication. Our study did not distin-

guish among countries based on the order of authors, the first author, or the degree of co-

authorship contribution, though fractional counting and corresponding authorship-based

counting are alternative methods. This approach was influenced by WoS’s notably inaccurate

coverage of corresponding author information before 2008, which often led to the default of the

first author/institution being listed as the corresponding author. Consequently, when an author

is affiliated with institutions in multiple countries, journal publications are equally attributed to

each of those countries. These methods exhibit high correlations at the macro level [4].

Overall, the WoS is a valuable tool for analyzing the global landscape of AI research. How-

ever, potential biases in classifying countries based on author affiliations should be considered.

Additionally, it is important to recognize that this method of bibliographic data collection may

overestimate research output from Western countries and English-language publications,

introducing potential bias in country classification.

Through these meticulous data preprocessing efforts, we constructed our dataset. The AI-

related papers we collected covered 230 subcategories out of 252, totaling 468,104 scientific

articles published between 1980 and 2019. To examine temporal patterns, we divided the data

into eight 5-year intervals. The data were organized by country (170 countries), time period

(eight 5-year intervals), and research area (230 disciplines), resulting in a (170 × 8 × 230)

matrix of scientific publications.

Variables

Dependent variable. Balassa [20] introduced the RCA to determine a country’s relative

advantage for specific products. This methodology can be adapted for specific technologies

using the following mathematical representation:

RCAc;j;t ¼
patentc;j;t=

X

j
patentc;j;t

X

c
patentc;j;t=

X

c

X

j
patentc;j;t

ð1Þ

Where c, j, and t denote the country, technology, and time, respectively. An RCA value

greater than 1 signifies a comparative advantage in relation to technology j for country c at

time t. ENTRY refers to the introduction of new technologies or activities into a certain area,

such as a city, region, or country. It represents diversification and renewal in technological

industries and is used to measure technological changes [28]. In some contexts, ENTRY is

used as a binary variable (0 or 1) to indicate the introduction of a new technology with a com-

parative advantage in a country. The ENTRYc,j,t formula represents the probability of a country

transitioning to having a comparative advantage in regard to a specific technology (technologi-

cal specialization). This can be mathematically expressed as follows:

ENTRYc;j;t ¼ PðRCAc;j;t > 1jRCAc;j;t� 1 < 1Þ ð2Þ

where ENTRYc,j,t calculates the probability that country c will gain a comparative advantage in

technology j at time t when it did not have a comparative advantage in regard to the same tech-

nology at the previous time point (t − 1). This measure captures the likelihood of a country

transitioning from a disadvantaged to advantageous position in a particular technological

domain over time. The EXITc,j,t formula denotes the likelihood of a country relinquishing its
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comparative advantage in a specific technological domain. This is formally defined as follows:

EXITc;j;t ¼ PðRCAc;j;t < 1jRCAc;j;t� 1 > 1Þ ð3Þ

where EXITc,j,t computes the probability that country c loses its comparative advantage in tech-

nology j at time t when it possesses a comparative advantage in the same technology during

the previous period (t − 1). This metric gauges the propensity of a country to shift from a posi-

tion of strength to one of weakness in a specific technology field over a given period.

Independent variable. Technology relatedness density. Technology-relatedness density

measures how closely related technologies are clustered around a given technology in a coun-

try at a certain time [21]. This can be derived from the technological relatedness of a technol-

ogy to all other technologies in which the country has a relative technological advantage. This

measure is calculated by dividing the sum of the technological relatedness of the technology to

all other technologies in a specific country by the sum of the technological relatedness of the

technology to all other technologies in a reference country. The calculation process for tech-

nology relatedness and technology-relatedness density is as outlined below. First, the techno-

logical relatedness (φi,j,t) between technologies i and j is calculated as follows:

φi;j;t ¼ PðRCAc;j;t > 1jRCAc;i;t > 1Þ ð4Þ

This value denotes the conditional probability that technology j exhibits a comparative

advantage (RCA > 1) given that technology i has an RCA. Second, technology-relatedness

density is determined as follows:

TECH ̲DENc;j;t ¼

X

j2c;j6¼i
φi;j;t

X

i6¼j
φi;j;t

� 100 ð5Þ

This metric measures the average degree of technological relatedness between technology i
and all other technologies j in country c at time t, excluding i. The value of relatedness density

ranges from 0% to 100%. A value of 0% indicates that there is no technology related to technol-

ogy i in the country in question, whereas a value of 100% indicates that all technologies related

to technology i belong to the country’s technological portfolio.

Science-technology cross-proximity density. The cross-proximity density between science

and technology, also known as ‘sci-tech cross-density,’ is a measure of how the scientific devel-

opment in a country is connected to the technology sectors in which it aims to grow [15]. This

measure indicates the average proximity of a technology class to a country’s current scientific

structure during a specific period. A high sci-tech cross-density value implies that a country

has a high degree of scientific development in areas closely related to the technology field that

it aims to develop. The importance of this measure lies in its ability to reveal a country’s poten-

tial to develop new technologies based on its existing scientific capabilities [4].

For the cross-density analysis, we first calculated the proximity between scientific fields and

technological classes. This calculation reflects the extent of the overlap or connection between

scientific fields and technological classes within a specific context, such as a country. This is

instrumental in revealing how a country’s scientific capabilities align with those of its techno-

logical class. A high proximity value indicates a close relationship between a country’s scien-

tific research and the technological areas on which it is focusing, potentially leading to more

efficient technological development and innovation. This proximity was measured using the

minimum conditional probability, a well-established method in the literature [4, 15, 32]. This

approach selects pairs of scientific fields and technological domains that both exhibit an RCA

greater than one. For these pairs, the minimum conditional probability is determined using
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the lower of the two calculated conditional probabilities as a cross-proximity measure. This

conservative approach offers a more accurate estimate of the relatedness between the two enti-

ties. The formula used for this measurement is as follows:

φX sci;tech;t ¼ min
PðRCAsci;t > 1jRCAtech;t > 1Þ

PðRCAtech;t > 1jRCAsci;t > 1Þ

( )

ð6Þ

where sci denotes the scientific category, tech is the technological field, and t is the period. Sec-

ond, to measure cross-relatedness density, we computed the average sci-tech cross-proximity

for a technology class relative to the country’s existing scientific structure within a specified

time period. This was achieved using the following equation:

CROSS ̲DENSITY ¼ oX
c;tech;t ¼

X

tech2c;tech6¼sci
φX sci;tech;t

X

sci6¼tech
φX sci;tech;t

� 100 ð7Þ

In this equation, cross-density quantifies the average degree of cross-proximity between a

specific technological class (e.g., as defined by a four-digit CPC code) and all other scientific

fields in Country c at time t. This metric is essential, as it reveals the interrelatedness and co-

occurrence patterns between scientific and technological fields, providing insight into the

dynamics in a country’s innovation ecosystem.

Technology complexity. The technology complexity index (TCI) quantifies the complexity

of technologies by analyzing the structure of the bipartite network that links countries to the

technologies they develop. We employ the ’Method of Reflections’ technique, as proposed by

Hidalgo and Hausmann [33], to calculate technology complexity. This approach accounts for

a country’s diversity (the range of technological fields it produces) and the ubiquity of the tech-

nologies in question (how commonly they are found in different countries). Initially, a coun-

try’s diversity is determined by the number of technologies it produces, and the ubiquity of a

technology is indicated by the number of countries producing it. Diversity measures the degree

of centrality of country c in a bipartite network linking countries to technologies:

DIVERSITY ¼
X

j

Mc;j ð8Þ

The ubiquity represents the degree centrality of technological class j:

UBIQUITY ¼
X

c

Mc;j ð9Þ

Here,Mc,j refers to a two-mode matrix involving country c and technology j. It is defined as

follows:

Mc;j ðj ¼ 1 if RCA � 1; otherwise 0Þ ð10Þ

This matrix indicates whether country c has a comparative advantage (RCA) in the produc-

tion of technology j. In this approach, the use of ‘Mc,j’ effectively minimizes undue variation by

focusing solely on a marked presence (Mc,j = 1) or absence (Mc,j = 0). In the second step, tech-

nology complexity is calculated by sequentially combining diversity and ubiquity using two

PLOS ONE AI technology specialization and national competitiveness

PLOS ONE | https://doi.org/10.1371/journal.pone.0301091 April 4, 2024 11 / 26

https://doi.org/10.1371/journal.pone.0301091


equations over a series of n iterations:

ECI ¼
1

UBIQUITY

X
Mc;jTCI ð11Þ

TCI ¼
1

DIVERSITY

X
Mc;jECI ð12Þ

where ECI represents the economic complexity index, TCI signifies the technology complexity

index, c denotes a country, and j denotes a technology. With each subsequent iteration, this

method yields increasingly precise estimates of complexity by integrating feedback effects and

considering the complexity of the technologies produced by a country or that of countries pro-

ducing a particular technology. The iterations cease when the ranking of countries and tech-

nologies stabilizes from one step to the next.

Regression model

To examine the probability of binary dependent variables, namely the entry and exit of technol-

ogy, this study employs a panel logit model incorporating three-way fixed effects (FEs) for coun-

try, technology, and time to account for unobserved, time-invariant heterogeneity across cross-

sectional units in countries (Country FEs), technologies (CPC FEs), and periods (Period FEs).

The specified model is as follows:

ENTRYc;j;t ¼ b1 � TECH ̲DENSITYc;j;t� 1 þ b2 � TECH ̲COMPLEXITYj;t� 1

þb3 � CROSS ̲DENSITYc;j;t� 3 þ b4 � TECH ̲DENSITYsqc;j;t� 1

þb5 � TECH ̲COMPLEXITYsqj;t� 1 þ b6 � CROSS ̲DENSITY
sq
c;j;t� 3

þb7� 10 � CONTROLc;j;t� 1 þ ac þ gj þ dt þ εc;j;t

ð13Þ

where c, j, and t represent the country, technology, and time period, respectively. The depen-

dent variables include ENTRY and EXIT, which represent the introduction and termination of

the technology, respectively. In the ENTRY model, the dependent variable is assigned a value

of 1 if country c adopts a new RCA technology at time t; otherwise, the value is 0. In the EXIT

model, the dependent variable takes a value of 1 if country c discontinues a preexisting RCA

technology at time t and 0 otherwise. The independent variables of technology relatedness

density (TECH_DENSITY) and technology complexity (TECH_COMPLEXITY) are lagged

by 1 year, whereas sci-tech cross-density (CROSS_DENSITY) is lagged by 3 years, given that

scientific knowledge adoption may take 3 years. Although previous studies [4] considered

4-year lag periods, the adoption process in AI fields, particularly computer science, may be

faster [3]. We also tested the robustness by changing the time lag from 0 to 4. Because com-

plexity and density may have an inverted U-shaped relationship with the dependent variable,

this study included squared terms for the independent variables. The control variables (POP,

GDP_CAPITA, TECH_STOCK, and TECH_SIZE) were logarithmically transformed to miti-

gate size effects and normalize their distribution. As outlined in S2 Table of S1 File, all of the

control variables are lagged by 1 year. To account for FEs, this study included αc, γj, and δt,
which represent the country, technology, and time, respectively. In the preceding model, εc,j,t
represents the error term that captures the unexplained variation in the dependent variable

that is not accounted for by the included independent variables and FEs.
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Results

Descriptive statistics

Table 1 presents the variables’ descriptive statistics and correlation coefficients. The key inde-

pendent variables (TECH_DENSITY, TECH_COMPLEXITY, and CROSS_DENSITY) have

values ranging from 0 to 100. Because of the requirement for simultaneous observations in the

science–technology space, TECH_DENSITY and TECH_COMPLEXITY had 26,300 observa-

tions each, whereas CROSS_DENSITY had 19,035 observations. Values observed only in the

technology or science space were removed. The number of observations for the control vari-

ables varies due to uneven data collection across countries for TECH_SIZE, which also has

26,300 observations representing patents per CPC. The correlation coefficients between the

variables were generally low.

Fig 1 presents the trends in AI research and patenting activities represented by the annual

number of AI-related patents and articles from 1980 to 2019 in global countries. This overview

delineates the expansion and progression of AI-related research and innovation. The uninter-

rupted augmentation of AI-centered innovation activities in both scientific and technological

sectors has been discernible since the 1980s. Notably, during the 2010s, the proliferation of

research publications outpaced that of patents, emphasizing the accelerating interest in AI

research and development across diverse disciplines.

Table 2 presents the top countries in AI knowledge production, which encompasses both

technological and scientific knowledge, and the corresponding fields from 1980 to 2019. In

addition, the top 10 countries, CPC symbols, and disciplines were identified based on the high-

est number of patents and articles.

In terms of technological knowledge, the United States had 202,867 patents, followed by

South Korea, Japan, Germany, and China. The most prevalent CPCs were found to be G06F,

G06N, H04L, G06Q, and G06V. The United States ranked first in scientific knowledge with

115,120 articles, followed by China, the United Kingdom, Germany, and Canada. The top dis-

ciplines in scientific knowledge production were computer science (AI), engineering (electrical

and electronic), computer science (interdisciplinary), computer science (information systems),

and neuroscience.

Science–technology space

In this study, we employ co-occurrence-based knowledge networks to probe the interaction

between scientific and technological knowledge generation activities, emphasizing the

period following the rapid AI advancements of the 2010s. The significant strides made in

AI since 2012, underscored by the success of AlexNet [44], provide a context for exploring

the science–technology nexus.

Table 1. Descriptive statistics and correlations.

Variables 1 2 3 4 5 6 7 Obs. Min Max Mean SD

1 TECH_DENSITY 1.0 26,300 -6.08 93.91 -1.51e-07 11.29

2 TECH_COMPLEXITY –0.243 1.0 26,300 -60.63 39.36 1.45e-06 30.89

3 CROSS_DENSITY 0.531 –0.044 1.0 19,035 -22.46 77.53 3.22e-07 18.16

4 POP 0.278 0.002 0.306 1.0 24,719 9.62 21.05 15.92 2.28

5 GDP_CAPITA 0.327 –0.025 0.501 –0.413 1.0 23,583 5.63 12.08 9.09 1.36

6 TECH_STOCK 0.582 0.007 0.609 0.322 0.518 1.0 25,754 0.69 14.77 7.47 2.77

7 TECH_SIZE 0.082 –0.334 0.116 –0.044 0.063 –0.067 1.0 26,300 2.39 12.82 9.61 1.35

Note: TECH_DENSITY, TECH_COMPLEXITY, and CROSS_DENSITY are mean-centered. SD refers standard deviation.

https://doi.org/10.1371/journal.pone.0301091.t001
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Fig 2 depicts a knowledge space with 161 scientific areas and 145 CPCs across 112 countries

from 2013 to 2017. This space, the product of the matrix in Fig 3B and its transposed version

in Fig 4B, illustrates the degree of interaction between science and technology. As shown in

Fig 1. Number of AI articles and patents by year.

https://doi.org/10.1371/journal.pone.0301091.g001

Table 2. Top AI knowledge production countries and fields, 1980–2019.

Technological Knowledge Scientific Knowledge

Country Patents per country CPCs Patents per CPC Country Articles per country Disciplines Articles per discipline

US 202,867 G06F 78,504 US 115,120 Computer Science (AI) 84,501

KR 48,915 G06N 71,052 CN 114,944 Engineering (Electrical & Electronics) 75,808

JP 36,548 H04L 38,946 UK 39,246 Computer Science (Interdisciplinary) 34,659

DE 35,995 G06Q 38,050 GE 26,235 Computer Science (Information Systems) 34,287

CN 32,102 G06V 31,098 CA 23,667 Neuroscience 33,175

FR 14,807 G06T 30,236 IN 21,776 Computer Science (Theory & Method) 28,257

CA 13,917 G06K 28,880 SE 19,836 Automation and Control Systems 20,353

UK 13,197 H04W 22,693 IT 19,817 Operations Research & Management Science 18,525

NL 9,542 H04N 20,235 IR 19,590 Environmental Sciences 17,066

IN 8,374 A61B 18,880 FR 19,035 Telecommunications 16,534

https://doi.org/10.1371/journal.pone.0301091.t002
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Fig 2A, a network layout algorithm [70] situates undirected graph nodes based on their pair-

wise distances. The size of each node signifies the patent and article counts per CPC and

Fig 2. Science–technology knowledge space. (A) Visualization of the science–technology intersection space. (B) Representation of the hierarchically clustered proximity

matrix.

https://doi.org/10.1371/journal.pone.0301091.g002

Fig 3. Scientific knowledge space. (A) Graphic representation of the science space. (B) Hierarchically clustered proximity matrix depiction.

https://doi.org/10.1371/journal.pone.0301091.g003
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discipline, with the labels representing the initial three digits of each discipline and CPC cate-

gory. These were subdivided into five scientific and eight technological fields. Fig 2B presents

the cross-proximity matrix clustering of the scientific areas and technological fields with high

co-occurrence probabilities. A limited number of these fields and areas, particularly G06, H04,

and A61 (as indicated in Table 2), are significantly involved in the production of AI knowl-

edge, including prolific disciplines such as computer science.

Fig 3 illustrates the science space, encompassing 225 scientific areas in 160 countries from

2013 to 2017. The WoS Core Collection [69], a widely used database for scholarly research, was

used to categorize these scientific areas. This figure depicts the distribution of the scientific

areas and highlights the most active and visible research areas. Fig 4 shows the technology

space, which includes 630 four-digit CPCs from 144 countries during the same period. The

CPC scheme is divided into nine sections (A–H and Y) and further subdivided into classes, sub-

classes, groups, and subgroups. This figure offers a comprehensive view of technological fields,

highlighting the most productive research and development (R&D) areas. Collectively, these fig-

ures contribute to a broad understanding of the science–technology space, making it easier to

identify potential opportunities for academia–industry collaboration and future research.

Panel logit regression results

Table 3 presents the panel logit regression results for ENTRY, examining three primary inde-

pendent variables (TECH_COMPLEXITY, TECH_DENSITY, and CROSS_DENSITY) as well

as control variables. In the panel logit model, the coefficients represent the estimated changes

in the log odds of the outcome for a one-unit increase in the predictor variable. Therefore,

these coefficients do not denote the direct probabilities. Instead, they are associated with odds,

defined as the ratio of an event’s probability (in this context, ENTRY) to the non-occurrence

of the same event. Odds ratios are obtained by exponentiating logistic regression coefficients.

For example, the coefficient of TECH_DENSITY in Table 3 is 0.3206. The corresponding odds

Fig 4. Technological knowledge space. (A) Graphical illustration of the technology space. (B) Hierarchically clustered proximity matrix representation.

https://doi.org/10.1371/journal.pone.0301091.g004
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ratio, calculated as e0.3206, equates to 1.378, suggesting a 37.8% increase in the odds of ENTRY

for each unit increment in TECH_DENSITY. The findings reveal a statistically significant rela-

tionship between entry and both technology complexity and relatedness density at the 1%

level. Specifically, increases in these variables are associated with a greater likelihood of entry

into a new technology when the other variables are held constant.

Moreover, science–technology cross-density demonstrates a positive and statistically signifi-

cant association with ENTRY at the 1% level, indicating that increased proximity to a country’s

scientific and technological portfolio increases the probability of technology entry when con-

trolling for other factors. The effects on the likelihood of ENTRY becoming 1 were most signifi-

cant in the order of TECH_DENSITY, CROSS_DENSITY, and TECH_COMPLEXITY. The

squared terms of the primary independent variables display negative and statistically significant

relationships with ENTRY, signifying possible diminishing returns or complex dynamics. Fur-

thermore, as shown in S3 Fig of S1 File, the combined effect of technological complexity and sci-

entific–technological relatedness density leads to an ENTRY probability of 1. Thus, we can infer

that the optimal combination of knowledge complexity and scientific–technological collabora-

tion maximizes the effect of technological diversification in a given country.

Table 3. Panel logit regression results.

Dependent variable: ENTRY Dependent variable: EXIT

M1 M2 M3 M4 M1 M2 M3 M4

TECH_DENSITY 0.2137***
(0.0031)

0.3225***
(0.0047)

0.2137***
(0.0031)

0.3206***
(0.0047)

–0.1019***
(0.0031)

–0.1800***
(0.0067)

–0.1019***
(0.0031)

–0.1802***
(0.0068)

TECH_COMPLEXITY 0.0073***
(0.0015)

0.0135***
(0.0015)

0.0066***
(0.0015)

0.0142***
(0.0016)

–0.0096***
(0.0031)

–0.0131***
(0.0031)

–0.0096***
(0.0031)

–0.0130***
(0.0032)

CROSS_DENSITY 0.0320***
(0.0016)

0.0286***
(0.0015)

0.0319***
(0.0016)

0.0431***
(0.0022)

0.0049**
(0.0022)

0.0048**
(0.0021)

0.0049**
(0.0022)

0.0057

(0.0045)

DENSITY_sq –0.0024***
(0.0001)

–0.0023***
(0.0001)

0.0011***
(0.0001)

0.0011***
(0.0001)

TECH_COMPLEXITY_sq –0.0001**
(0.0001)

–0.0001**
(0.0001)

0.0000

(0.0001)

0.0000

(0.0001)

CROSS_DENSITY_sq –0.0004***
(0.0001)

–0.0000

(0.0001)

POP 1.6318***
(0.1948)

1.5062***
(0.1980)

1.6182***
(0.1949)

1.3460***
(0.2012)

0.4190

(0.6125)

0.5112

(0.6204)

0.4204

(0.6129)

0.5152

(0.6208)

GDP_CAPITA 0.5374***
(0.0700)

0.5041***
(0.0713)

0.5289***
(0.0701)

0.4381***
(0.0719)

0.3316*
(0.1742)

0.3216*
(0.1825)

0.3318*
(0.1743)

0.3240*
(0.1826)

TECH_STOCK –0.1529***
(0.0391)

–0.3956***
(0.0406)

–0.1492***
(0.0391)

–0.4172***
(0.0407)

0.4199***
(0.0985)

0.5690***
(0.1033)

0.4198***
(0.0985)

0.5682***
(0.1033)

TECH_SIZE 0.4954***
(0.0413)

0.4721***
(0.0417)

0.4951***
(0.0412)

0.4585***
(0.0418)

–0.3353***
(0.0858)

–0.3212***
(0.0867)

–0.3354***
(0.0858)

–0.3216***
(0.0868)

Country FEs YES YES YES YES YES YES YES YES

CPC FEs YES YES YES YES YES YES YES YES

Period FEs YES YES YES YES YES YES YES YES

N (group) 55,154

(11,403)

55,154

(11,403)

55,154

(11,403)

55,154

(11,403)

9,691

(3,059)

9,691

(3,059)

9,691

(3,059)

9,691

(3,059)

LR (χ^2) 17615*** 17778*** 17620*** 18703*** 2096*** 2273*** 2096*** 2274***

Notes: Standard errors in parentheses

* p < 0.1,

** p < 0.05,

*** p < 0.01

The dependent variables (ENTRY or EXIT) are binary (0 or 1). The independent and control variables are lagged by 1 year except for CROSS_DENSITY, which is

lagged by 3 years. The term ’sq’ indicates a squared term.

https://doi.org/10.1371/journal.pone.0301091.t003
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In models in which EXIT is the dependent variable, the coefficients represent the impact of

the independent variables on the logarithmic odds of a technology’s exit from a country. The

analysis revealed that increases in technology complexity and technology-relatedness density

are linked to a decreased likelihood of technology exit at the 1% significance level. Science-tech-

nology cross-density exhibits a positive association with EXIT at the 5% significance level in

specific models; however, this relationship becomes statistically insignificant in subsequent

models. The squared terms suggest a nonlinear relationship between technology-relatedness

density and EXIT, whereas the relationships involving technological complexity and cross-den-

sity remain ambiguous. In conclusion, the results indicate distinct associations between the

main independent variables and technology exit compared to technology entry. These findings

have considerable implications for understanding the factors that influence entry and exit, ulti-

mately informing policymaking related to innovation.

Robustness checks

Table 4 presents the robustness assessments of the main findings of Model 4 for ENTRY and

EXIT, focusing on the independent variables segmented by income level and the top 10 AI

knowledge producers. Key insights include the top 10 countries leveraging more complex

knowledge for entry, as indicated by the greater effects of technology complexity compared to

other countries, but showing lower technology-relatedness density effects. This suggests a reli-

ance on advanced knowledge over path-dependent preexisting knowledge. Similar patterns

emerge across income groups, with high-income countries displaying greater technology com-

plexity effects on ENTRY, underscoring the varying effects of technology complexity and relat-

edness density in diverse contexts.

The EXIT models demonstrate a negative correlation between technology complexity and

EXIT across all groups, with negative effects being more pronounced in technologically

advanced countries. This finding indicates that increased technological complexity reduces the

probability of industry exit in these countries. Similarly, technological relatedness density neg-

atively influences EXIT across all groups, suggesting that increased relatedness density

decreases the odds of industry exit. Nonetheless, the effects of scientific and technological

relatedness density on EXIT are not statistically significant, indicating that the interaction

between science and technology does not contribute significantly to a nation’s ability to main-

tain technological competitiveness. Despite the differences in income levels and top AI knowl-

edge producers compared to the average, the relationships were statistically significant and

consistent with expectations: technologically advanced countries tend to capitalize on complex

knowledge, lowering the likelihood of exit from a technologically complex industry.

Conversely, less advanced countries appear to rely more on preexisting knowledge bases,

exhibiting distinct technology entry and exit dynamics compared to the global norm. These

findings add to our understanding of the determinants of technology entry and exit and may

have implications for future innovation policy formulation while preserving the robustness of

the findings. The notion that income-specific factors shape these relationships suggests that

policymakers should further investigate these relationships.

To improve the reliability and consistency of our findings, we conducted robustness checks

on the panel logit models using various specifications, accounting for potential biases and con-

founding influences. This involved stratifying the specifications by grouping and applying

three-way FEs for countries, technologies, and periods. Initially, the countries were categorized

by income level, which facilitated the validation of our results at different stages of development

and the exploration of heterogeneity between income groups. Subsequently, the countries were

divided into two groups: the top 10 countries that produced the most knowledge in terms of
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technological advancement and the remaining countries. This allowed us to examine whether

the level of technological development in a country influences the regression model coefficients.

Technologies were classified according to specific schemes to address the potential effects of

technology-specific characteristics on the relationships between the dependent and independent

variables. This step helped ensure the robustness of our findings across various technologies.

Finally, time lags were incorporated into the analysis to control for potential period-specific

effects, recognizing that relationships between variables might evolve or display time-lagged

effects and strengthening the robustness and consistency of our results across time frames.

In conclusion, when countries were divided into groups based on their economic and tech-

nological maturity, deviations from the global average were observed. Nonetheless, the primary

model’s main findings retained statistical consistency and significance, as shown in Table 4.

For additional validation, S4 Table in S1 File provides a robustness check of Model 4 from

Table 3 using various AI classification schemes: 1) key phrases from patent document abstracts

and titles, 2) key phrases from patent document titles, and 3) CPC symbols as suggested by the

Table 4. Panel logit regression results (outcome level).

Dependent variable: ENTRY Dependent variable: EXIT

High Mid and Low TOP10 Others High Mid and Low TOP10 Others

TECH_DENSITY 0.3012***
(0.0048)

0.3985***
(0.0130)

0.1771***
(0.0039)

0.4135***
(0.0073)

–0.1715***
(0.0066)

–0.2049***
(0.0458)

–0.1236***
(0.0052)

–0.2745***
(0.0166)

TECH_COMPLEXITY 0.0196***
(0.0020)

0.0072**
(0.0031)

0.0314***
(0.0030)

0.0106***
(0.0021)

–0.0148***
(0.0039)

–0.0074

(0.0105)

–0.0227***
(0.0049)

–0.0046

(0.0064)

CROSS_DENSITY 0.0308***
(0.0022)

0.0771***
(0.0060)

0.0155***
(0.0023)

0.0653***
(0.0033)

0.0053

(0.0040)

–0.0032

(0.0308)

0.0039

(0.0037)

0.0078

(0.0089)

DENSITY_sq –0.0023***
(0.0001)

–0.0032***
(0.0002)

–0.0015***
(0.0001)

–0.0033***
(0.0001)

0.0011***
(0.0001)

0.0004

(0.0009)

0.0010***
(0.0001)

0.0026***
(0.0003)

TECH_COMPLEXITY_sq –0.0001***
(0.0001)

–0.0001

(0.0001)

–0.0001

(0.0001)

–0.0001**
(0.0001)

0.0001

(0.0001)

–0.0005

(0.0002)

0.0001

(0.0001)

0.0002*
(0.0001)

CROSS_DENSITY_sq -0.0002***
(0.0001)

-0.0010***
(0.0002)

-0.0001

(0.0001)

-0.0006***
(0.0001)

-0.0001

(0.0001)

0.0001

(0.0008)

0.0001

(0.0001)

-0.0002

(0.0001)

POP 1.0770***
(0.2502)

0.5745

(0.4220)

1.6070**
(0.7042)

1.6911***
(0.2331)

0.18055

(0.7088)

–2.9284

(1.9322)

0.4967

(1.1141)

–0.6695

(0.8257)

GDP_CAPITA 0.7627***
(0.1108)

0.2326*
(0.1333)

–0.1816

(0.1470)

0.9308***
(0.0932)

0.4229

(0.2717)

–0.1204

(0.4091)

–0.0753

(0.2843)

0.2992

(0.2766)

TECH_STOCK –0.3366***
(0.0575)

–0.5412***
(0.0802)

–0.3277***
(0.0853)

–0.4470***
(0.0523)

0.6956***
(0.1294)

0.2322

(0.2448)

0.8476***
(0.1676)

0.4627***
(0.1471)

TECH_SIZE 0.4049***
(0.0489)

0.5592***
(0.0861)

0.2531***
(0.0726)

0.5349***
(0.0529)

–0.3441***
(0.0914)

–0.2729

(0.3124)

–0.3343***
(0.1200)

–0.3602***
(0.1354)

Country FEs YES YES YES YES YES YES YES YES

CPC FEs YES YES YES YES YES YES YES YES

Period FEs YES YES YES YES YES YES YES YES

N (group) 41,153

(8,284)

13,496

(3,027)

16,730

(3,530)

37,726

(7,794)

8,673

(2,639)

1,004

(414)

5,489

(1,587)

4,191

(1,471)

LR (χ^2) 14482*** 4388*** 6331*** 12903*** 2107*** 217*** 1542*** 849***

Notes: Standard errors in parentheses

* p < 0.1,

** p < 0.05,

*** p < 0.01

The dependent variables (ENTRY and EXIT) were employed from Model 4 in the main results (Table 3). High denotes a high-income country. Middle- and low-income

countries encompass upper-middle-, lower-middle-, and low-income countries. TOP10 denotes the top 10 countries that are most productive in terms of patents,

whereas “Others” denotes the remaining countries.

https://doi.org/10.1371/journal.pone.0301091.t004
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World Intellectual Property Organization. Despite some differences among these schemes and

the limitations of the CPC-only approach, the robustness of the relationships between the

independent and control variables as well as ENTRY and EXIT was confirmed across the

schemes, underscoring the validity and generalizability of the main results.

S5 Table in S1 File evaluates the robustness of the main findings by varying the number of

lagged years for ENTRY in Model 4 from Table 3. The analysis covering lags 0 to 4 reveals a

consistently positive and statistically significant relationship with ENTRY across all models,

thereby verifying the robustness of the main findings over different time lags. S6 Table in S1

File presents a similar robustness test for EXIT. Again, the results reveal consistent relation-

ships among technological complexity, density, and EXIT. However, the relationship between

scientific proximity and EXIT is less consistent, indicating potential time-lagged effects or

nuances that warrant further investigation.

Marginal and net effect analysis

To elucidate the relationship between AI technology dynamics and influential factors, we pres-

ent the estimated average marginal effects of these factors on the probability of AI technology

entry and exit (S7 Table in S1 File). This study estimated the average partial effects for binary

regression models with FEs and identified significant coefficient values at the 95% level or

higher. As shown in Fig 5, the average marginal effect of cross-density on ENTRY exceeds that

of technological complexity. These factors are positively correlated with a country’s AI

Fig 5. Marginal effects of technology complexity and cross-density on the probability of ENTRY.

https://doi.org/10.1371/journal.pone.0301091.g005
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technology specialization. Fig 6 shows the average marginal effects of technology complexity

and science–technology cross-relatedness density on the probability of AI technology exit.

Both of these factors attenuate the potential of AI technology to exit a country up to a certain

threshold, beyond which they have divergent effects. The probability of AI technology exit

diminishes with the escalation of technology complexity. However, cross-density that sur-

passes a certain threshold fails to safeguard against the exit of AI technologies.

Furthermore, the net effects were calculated for quadratic terms that had statistically signifi-

cant marginal effects at the 95% level or higher. For example, in S7 Table’s Model 2 of S1 File,

the net influence of technological relatedness on ENTRY is 0.01045, derived from 2 × [–

0.00007 × –0.000000151] + [0.0104588], with an average value of -0.000000151, a marginal

impact of –0.00007, an unconditional effect of 0.0104588, and a factor of 2 from the quadratic

derivation. The directionality and statistical significance of these coefficients are corroborated

in the framework of the linear probability model, albeit with varying degrees of influence.

Hence, the results indicate that although the synergistic effects of scientific knowledge and

technology contribute considerably to creating new knowledge for competitive advantage,

complex technologies exert a weaker influence on new knowledge creation but sustain a potent

relationship with retaining competitiveness in extant technologies.

Fig 6. Marginal effects of technology complexity and cross-density on the probability of EXIT.

https://doi.org/10.1371/journal.pone.0301091.g006
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Discussion and conclusions

This study examined the determinants of AI technology specialization, a key element of national

competitiveness. We evaluated technological specialization at the country level using an RCA-

based method to quantify the relative advantages of technologies across multiple countries. In

particular, our study introduced the concept of cross-proximity density to explore how scientific

research underpins technological progress in AI. Employing a three-way fixed-effects panel

logit model, we analyzed data from 170 countries over the period of 1980 to 2019.

Building on this framework, we discovered that AI specialization is path dependent. This

finding implies that a country’s transition to new AI technologies is heavily influenced by its

existing technological capabilities. Countries tend to specialize in AI technologies related to

their pre-existing technological portfolios, supporting the principle of relatedness in economic

complexity theory [21, 23, 27]. This principle posits that countries are inclined to expand into

areas similar to their existing technological and industrial capabilities.

Our findings also reveal that scientific research is a crucial foundation for technological

progress in AI, enhancing the comparative advantage of a country in related areas. This sug-

gests that technological breakthroughs in AI often originate from foundational scientific

research. The science-technology cross-proximity density, which reflects the closeness between

a country’s scientific research and the technological fields on which it is focused, shows a posi-

tive and statistically significant relationship with the development of new AI technologies,

pointing toward more efficient technological development and innovation. This finding aligns

with recent empirical studies showing that scientific capabilities can significantly influence the

likelihood of countries developing technologies related to their scientific fields [4, 71].

However, we note an intriguing pattern: the relationship between cross-proximity density and

AI specialization has an inverted U-shape. This extends the optimal cognitive proximity theory to

the multidimensional space of science and technology, suggesting that knowledge transfer may

be impeded if the cognitive proximity between two entities is either too low or too high [53]. This

highlights the importance of maintaining a balanced cognitive proximity to foster innovation.

This study also identifies the influence of complex technologies on AI specialization.

Although complex technologies positively influence AI specialization, their impact is less pro-

nounced than that of scientific knowledge. This suggests that in rapidly advancing fields, such

as AI, incorporating new scientific knowledge into related industries may be more advanta-

geous than simply advancing existing technologies to outpace competitors. These findings

challenge the traditional view that increasing technological complexity is the primary pathway

to gain a competitive advantage in AI [22]. However, increasing technological complexity

appears to be more effective for maintaining existing technological competitiveness than for

acquiring new scientific knowledge.

The insight provided by these findings offers valuable guidance for policymakers, particu-

larly in less-developed nations. The results of this study highlight that these countries might lack

the infrastructure to foster AI specialization through technical complexity. However, in a rap-

idly evolving technological landscape, integrating AI into relevant sectors using novel scientific

knowledge, even if it is less technically complex, may be more beneficial than emulating the

approaches of more advanced nations. This indicates a strategic pivot from prioritizing techno-

logical complexity to adopting a balanced strategy that capitalizes on new scientific discoveries.

Our study has several limitations. The publication records used in this study do not fully

represent all of the activities in the field of AI, particularly in the humanities, social sciences,

and arts, owing to our reliance on data from SCI journals. Nonetheless, by using paper and

patent data that predominantly represent academic and inventive activities in AI’s computer

science domain, this study contributes to connecting these two dimensions.
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Looking ahead, we anticipate that future research could more comprehensively explore

how technological breakthroughs in AI, such as those in recent large language models such as

ChatGPT, impact national technological competitiveness. This can be achieved using the pro-

posed multidimensional space model.

In conclusion, while enhanced scientific and technological knowledge acts as a catalyst for

AI specialization in individual nations, the contemporary landscape presents a more complex

picture. Merely expanding knowledge does not guarantee extensive AI specialization; its suc-

cess depends on relevant application. The interaction between scientific research and techno-

logical innovation is crucial for the emergence of new technologies, especially in settings

characterized by optimal cognitive proximity. Moreover, the transition from scientific knowl-

edge to technological specialization involves time lags that are steadily shortening in rapidly

evolving areas such as AI. For countries seeking technology-related comparative advantages,

integrating the latest scientific discoveries into related sectors is more effective than merely

increasing the complexity of existing technologies to surpass competitors. This insight is par-

ticularly valuable for policymakers in less technologically and economically developed coun-

tries, indicating that even with limited technological resources, strategically incorporating

relevant AI technologies into closely aligned fields can provide a comparative advantage.
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