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Abstract

In this article we study the social dynamic of temporal partitioning congestion games

(TPGs), in which participants must coordinate an optimal time-partitioning for using a limited

resource. The challenge in TPGs lies in determining whether users can optimally self-orga-

nize their usage patterns. Reaching an optimal solution may be undermined, however, by a

collectively destructive meta-reasoning pattern, trapping users in a socially vicious oscil-

latory behavior. TPGs constitute a dilemma for both human and animal communities. We

developed a model capturing the dynamics of these games and ran simulations to assess

its behavior, based on a 2×2 framework that distinguishes between the players’ knowledge

of other players’ choices and whether they use a learning mechanism. We found that the

only way in which an oscillatory dynamic can be thwarted is by adding learning, which leads

to weak convergence in the no-information condition and to strong convergence in the with-

information condition. We corroborated the validity of our model using real data from a study

of bats’ behaviour in an environment of water scarcity. We conclude by examining the merits

of a complexity-based, agent-based modelling approach over a game-theoretic one, con-

tending that it offers superior insights into the temporal dynamics of TPGs. We also briefly

discuss the policy implications of our findings.

Introduction

Congestion, a situation in which the demand for a resource exceeds its capacity, constitutes a

pressing global problem. As the world population continues to grow, congestion dilemmas

become more prevalent both in the social world (e.g., traffic jams, crowded natural reserves)

and in the natural world (species competing for dwindling resources because of human inter-

ference and climate change). Congestion poses a significant governance and regulatory chal-

lenge [1: 28, 2:93]. Temporal partitioning games (‘TPGs’), are a special class of congestion

dilemmas in which participants must coordinate an optimal time partitioning for using a lim-

ited resource with limited external intervention. Whether TPGs can converge to optimal or

close-to-optimal equilibrium without external intervention is a challenging theoretical prob-

lem with important policy implications.
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In this paper, we analysed the social dynamic of TPGs. We use the analysis of TPGs to com-

pare a complexity-based approach with a game-theoretic, analytic modeling approach to social

dilemmas [3, 4]. We begin by describing the structure of TPGs, explain why they create a social

dilemma, and highlight their potential welfare-destructive dynamic. Despite the prevalence of

TPGs, their unique dynamic received relatively little attention in the economic and ecological

literature. We then develop a model that captures the dynamic of these games, focusing on

what we call the ‘Black Iris Blossom Game’. We ran simulations to test the model behaviour in

a 2×2 framework that distinguishes between the players’ access to information and the use and

non-use of learning. We further test our model based on real data from a study of bats’ behav-

iour. We demonstrate that adopting a complexity-based approach, using agent-based model-

ling, provides better insights into the temporal dynamic of TPGs than the game-theoretic

approach.

In congestion games, agents must coordinate how to jointly use a limited resource most

beneficially [5: 147]. A subclass of congestion games, which is the focus of this article, concerns

games in which users can partition their use patterns over time to achieve optimal joint usage

of a resource (users may also optimize joint usage via spatial partitioning, which we do not

explore in this study). A unique feature of congestion games is the presence of externalities: a

situation in which the action of each agent adversely affects the utility of the other agents using

the resource. This adverse effect can be either purely pecuniary, where an increase in the num-

ber of users reduces the benefit received by each user because of the limited capacity of the

resource, or real, where the congestion leads to the physical destruction of the resource [5:

147–148]. A further unique feature of temporal partitioning games is that they can give rise to

a potentially destructive cyclical reasoning pattern that could undermine the capacity of the

group to achieve optimal equilibrium. This aspect of congestion games was first pointed out by

Brian Arthur in his El Farol bar model [4, 6].

Below we discuss three examples of temporal partitioning games that illustrate their poten-

tially destructive meta-reasoning pattern. These games occur in both the social and natural

world; their analysis should therefore be of interest to biologists, ecologists, and social scientists

alike. One example is natural recreation goods in which people compete for visiting opportuni-

ties in a resource that can only host a limited number of visitors [7]. The dilemma of nature

lovers is how to choose a visiting time (day, hour) to maximize their enjoyment. We assume

that people’s ‘nature experience’ decreases as the visiting site becomes more crowded, up to a

certain threshold level that is a function of spatial density. If the number of visitors exceeds

that level, people receive no utility from the visit, and may even experience negative utility if

we take into account their disappointment and travelling costs [8, 9]. The erosion in the quality

of the recreation experience, which takes place as the number of visitors increases, represents a

pecuniary externality because the natural asset itself is left unharmed. TPGs may also involve a

real externality when overcrowding not only reduces the visitors’ utility but also causes harm

to the natural good (the harm may be temporary, if the ecological asset replenishes itself, or

permanent) [7: 419–20]. The real externality can be captured by a ‘resilience’ threshold that

represents the capacity of the habitat to withstand stress.

TPGs can also involve purely social goods. A good example is competition for scarce publi-

cation slots. A case in point is the U.S. legal academic market. In contrast to most scientific

journals, which accept submissions year around, U.S. law reviews receive articles for publica-

tion in two cycles that take place annually between mid-February to mid-March and mid-

August to mid-September [10, 11]. The unique temporal feature of the U.S. law reviews market

imposes an enormous burden on the editors of the journals. Each year, U.S. law reviews

receive thousands of submissions that compete for limited slots, especially in top-tier journals

[12: 636, 13: 193]. The submission game involves two scarce goods that jointly create a
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congestion dynamic: a limited number of slots in which articles can be published and the edi-

tors’ limited attention capacity. Authors face the dilemma of selecting an optimal submission

date for their article to maximize the probability of its acceptance, considering the two con-

straints. The exact dynamics of the submission game depend on various other variables, but

these contextual factors do not alter its fundamental congestion structure.

The dilemma underlying the above examples is whether people can self-organize to opti-

mally partition their usage patterns (visiting times or submission times), which will maximize

the total utility of the group. Reaching an optimal solution could be undermined, however, by

a collectively destructive, self-nullifying, meta-reasoning pattern [14]. Let us assume that

everyone’s priority is to visit the natural reserve or submit the paper on the least crowded day.

Assume further that there is a focal day that is preferred by everyone because of some collective

(folk) belief that it is in some way the ‘best’ day (e.g., the day on which the flowers at the reserve

are at their peak blossom or editors are supposed to be particularly receptive). But because this

is what everyone prefers, this focal day is likely to be over-crowded, providing negative utility

to anyone who attempts to use the resource at that time. As people may anticipate that the

focal day is likely to be the first choice of everyone, they may prefer to choose another day, for

example, the day before or after the focal day. But if everyone follows this reasoning pattern,

these two days will also become overcrowded. Below we explore whether a collectively benefi-

cial temporal partitioning equilibrium can emerge under these conditions despite this poten-

tially destructive meta-reasoning pattern.

TPGs can also occur in the natural world. Consider how biologically similar (same taxo-

nomic class, similar body mass) and ecologically similar species (those utilizing the same

resource) use water resources in environments in which water is scarce [15]. The question is

whether such species can coordinate their visiting times to water resources that are too small to

accommodate simultaneous use by spatial separation, achieving optimal temporal partitioning.

The dynamic of TPGs in the animal world differs from social TPGs in two aspects: (a) because

animals do not possess the human capacity for strategic reflection, the destructive cyclical

dynamic that is a problematic feature of human interaction in TPGs is probably not an issue;

and (b) unlike humans, animals have no legal mechanisms that can be invoked to resolve coor-

dination problems. Despite the differences, on situations in which there is limited regulatory

intervention we believe that the dynamics of social and animal TPGs could be very similar [16].

Model and methods

To reveal the dynamic of TPGs, we developed a model that focuses on the temporal usage of a

limited natural recreation good. Although our model is based on a particular socio-ecological

dilemma, it can be applied to any TPG with multiple interacting agents and limited regulatory

oversight. It can thus be considered as a prototype model for any TPG. At the core of our

model, is the Iris atropurpurea (the ‘black iris’), an endangered species that can be found in a

few small enclaves, with a total area of less than 1 km2, across the coastal area of Israel [17: 158].

This geographic dispersion makes the black iris particularly vulnerable to urban develop-

ment pressures [17, 18]. The exceptionally eye-catching flowers of the black iris attract many

visitors during the time of its blossoming. One of the most attractive habitats of the black iris is

situated in the calcareous hills of Ness Ziona, a small town in the centre of Israel. The flowering

season of the black iris stretches from late January to the end of February and reaches its peak

around mid-February [18: 398, 19: 972]. The short blossom season together with the limited

areas in which the black iris can be found creates a congestion problem, which we call the

‘Black Iris Blossom Game’. The dilemma for iris lovers is how to choose a day to maximize

their enjoyment of the blossom. We assume that people’s ‘nature experience’ decreases as the
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visiting site becomes more crowded, up to a certain threshold level of density. If the number of

visitors exceeds that level, people receive no utility from the visit and may even experience neg-

ative utility if we take into account their disappointment and travelling costs [8, 9]. As the

number of visitors increases, the erosion in the quality of the recreation experience represents

a pecuniary externality because the natural asset itself is left unharmed. We assume that all

things being equal, people prefer to visit the iris habitat when the ratio of people/flowers is

minimal. The blossom game may also involve real externality that can occur when overcrowd-

ing not only reduces the visitors’ utility but also causes harm to the flowers themselves [7: 419–

20] (The harm could be seasonal if the iris population recovers in the next season, or it could

be permanent). We focus in our model only on the pecuniary externality. We abstracted away

real-life constraints, such as the distinction between weekdays and weekends, for the analysis.

The dilemma underlying this hypothetical scenario is whether people can self-organize to

optimally partition their visiting times so that the total enjoyment level of the group is maxi-

mized. As we argued above, reaching an optimal solution may be undermined, however, by a col-

lectively destructive meta-reasoning pattern, which could lead to an endless oscillatory dynamic.

We develop our model and simulation in three steps:

1. We start with a base case in which players have no information about the visiting patterns

(both historical and real time) and exercise no learning, to establish the foundational

dynamics of the game. The base case also includes heterogeneity in the players’ preferences

(represented by the utility they experience from visiting the nature reserve).

2. Next, we examine how the provision of information regarding the temporal visiting distri-

bution in the previous season, affects the dynamics of the game and the prospects of

convergence.

3. Finally, we introduce learning into both scenarios (base case and information disclosure)

and examine how it affects the dynamics of the game and the prospects of convergence.

As elaborated below, we do not attempt to directly model the strategic aspect of the agents’ rea-

soning process (that is, their beliefs about the beliefs of other players). We address this issue by

incorporating randomness into the players’ strategies. We return to this point in the discussion,

contrasting our approach with the K-level reasoning model. Our model differs from Brian

Arthur’s El Farol model in that agents do not form explicit expectations about what will be the

attendance in the next blossom period but decide based on the success of their strategy in the pre-

vious period, and when available, about their potential success in the next period, given the distri-

bution of visitors in the previous period when such data are available. This type of learning can be

described as stimulus-response learning or reinforcement learning, which is about understanding

how agents might learn to make optimal decisions through repeated experiences [20–22].

The game unfolds according to the following rules. After the first round, each player, i, col-

lects a revenue, calculated using the formula:

R ¼ f di; n dið Þ;mi;Cið Þ ð1Þ

where di is the day chosen by player i, n(di) is the number of players that chose the same day

(i.e., di), and mi is a parameter of player i indicating the player’s preference (the degree to

which the player values the experience of visiting nature). In the simulation, we tested only the

heterogeneous case, where players have different preferences (some may appreciate nature

more than others). Ci represents the disappointment cost of player i from having to return

without seeing the flowers if the threshold is exceeded (for the sake of simplicity, we disregard

the travel costs to the nature reserve), that is, the negative emotion experienced when the cho-

sen option (to visit nature rather than stay at home) fails [23, 24]. f decreases as n(di) increases
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and becomes negative for a large n(di), depending on an exogenous variable, z that represents

the capacity of the natural asset (the iris flowers habitat) to generate recreational utility for visi-

tors. We assume that if the number of visitors reaches a certain threshold that reflects the visi-

tors’ varying preferences for nature, the utility of that agent becomes negative: f = −Ci (in

contrast to other common-pool choice models, we assume then that the pool is not infinitely

divisible). f is also dependent on the strength of the players’ recreational preferences. This

means that people who visit the flowers may receive different utility levels. z changes with the

number of flowers that are available each day during the blossom period. K represents the dis-

tribution of flowers (K(d) on day d. The following rules describe the utility that players receive

as a function of the number of flowers and the number of other attending visitors.

mi � 1 for each i ða largermi represents stronger preference for natureÞ ð2Þ

f di; n dið Þ;mi;Ci; Kið Þ ¼ mi
K dið Þ
n dið Þ

if mi
K dið Þ
n dið Þ
� z∗ð f ; the utility each agent receives

from visiting the flowers; increases withmi and decreases with n dið ÞÞ:
ð3Þ

ð1Þ f di; n dið Þ;mi;Ci; Kið Þ ¼ 0 players who stay home receive zero utilityð Þ ð4Þ

ð2Þ f di; n dið Þ;mi;Ci; Kið Þ ¼ � Ci if mi
K dið Þ

n dið Þ
< z ð5Þ

The simulation included n agents (individuals), each with a preference attribute mi, chosen

uniformly in the range [1,3]. It was based on a 2×2 framework that distinguishes between the

players’ access to information and whether they use learning.

Condition 1: Players have access only to local knowledge

Information set. Players have access only to data regarding the number of people who

were present on the day they visited the habitat.

Strategy. Each player starts by randomly choosing a day from the blossom period, assign-

ing a different weight to each day, proportional to the distribution of flowers over the blossom

season. After each season, players assess their utility. If the utility is positive, they continue

with the same choice the next season. If the utility is zero or negative, they choose a behaviour

for next season based on the following rule:

With probability 1 − p, stay at home. With probability p, choose a random day (not including

the home option) for the next season with some weighted (blossom dependent) probability.

In the second step of the ‘no-information’ condition, we added a learning mechanism with

the following structure: if a player experiences negative utility, it multiplies p by a constant

L<1 (L was set in the simulation to 0.5) (the value of L affects the convergence rate but has lit-

tle impact on the final result; if a player stayed home for several seasons, p would only be multi-

plied by L once). The learning mechanism means that players become increasingly less

inclined to explore other visiting days after repeatedly experiencing negative results.

Condition 2: Players have access to global knowledge (information

disclosure by central planner)

Information set. Each player knows the total number and distribution of players who

attended the habitat in the previous period (they do not have real-time information).
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Strategy. Each player starts by randomly choosing a day from the blossom period, assign-

ing a different weight to each day, proportional to the distribution of flowers over the blossom

season. After each season, players assess their utility. If the utility is positive, they continue

with the same choice the next season. If the utility is zero or negative, they choose a behaviour

for next season based on the following rule:

With probability 1 − p, stay at home. With probability p, choose the option that produces

the highest expected utility by calculating its expected utility for each day, based on adding

itself to the last known attendance (the best option could be staying at home if all days are

expected to produce negative utility).

The full-information scenario assumes that players have stronger cognitive capacities: they

can evaluate a large information set and perform optimizing calculations. In the second step of

the ‘with-information’ condition, we added a learning mechanism with the same structure of

the one described above.

Analytical analysis of the blossom game: Nash equilibrium

We distinguish first between optimal and sub-optimal Nash equilibria (NE). The class of opti-

mal NE takes the following pattern: the blossom days are first filled by the players in the order

of their preference strength (if some players have identical preferences, they will be chosen ran-

domly), until no player can be added without incurring negative utility. All NE that satisfy these

conditions represent social optimum. The second class of sub-optimal NE consists of situations

in which the days are randomly populated by players, and although some agents with higher

preferences stay at home, the allocation constitutes an NE. For instance, in an n player game, an

NE may have m players (m< n) with a lower preference visiting the flowers if there is a player

with a higher preference who chooses not to visit. In such a case, the NE is secured because the

preference of the player who stays at home is not high enough to make his utility positive if he

joins on any of the days (its expected revenue, R, for joining each of the blossom days, i.e., for n
(di) + 1 visitors, is negative given his preference profile, whereas the revenue of each of the

other players is positive for their preference profiles for n(di) visitors, therefore none of the play-

ers have an incentive to change their choices(. There could be multiple suboptimal NEs.

A drawback of NEs, both optimal and sub-optimal, is that they lack fairness. There is a

small group of players (in the optimal NE class it consists of those with the highest preference

profile) who receive a positive revenue every season, while the revenue for the rest of the play-

ers is always zero. This is a winner-takes-all solution, where a possibly large portion of society

is prevented from accessing the common resource because of the stickiness of the NE solution.

A key difficulty of the analytical approach is that it does not provide any insight into the social

dynamics by which the system can converge (or fail to converge) to one of the multiple equilib-

ria identified by the analysis. The computational approach allows us to shed light on the

dynamics of temporal partitioning games, going beyond the limits of the analytical approach.

Results

We used the following parameters for the simulation:

mi = 1 + U, where U is chosen uniformly in the range [0,2].

Ci = -1 for all players (the behaviour is independent of the specific value, as long as it is

negative).

z = 0.1 for all players.
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The length of the blossom period is 19 days, with the blossom for each day being K(di) = min

{i, 20 − i}, i.e., a symmetric distribution achieving maximum on the mid-season day (k10 = 10).

The initial probability (p) of exploring alternative visitation slots was set as p = 0.5 for all the

scenarios.

In all cases, we assume satisficing, i.e., all the players experiencing positive utility do not
attempt to change their choice, even if a higher utility option is apparent.

No-information condition without learning

Fig 1(a) describes the number of visitors in selected days for 2,000 participants across 100 sea-

sons with no learning (L = 1). Fig 1(b) describes the average revenue for the visitors for each

day. As shown, equilibrium is not reached and there is over-crowdedness across the entire visi-

tation period, with visitors suffering a negative utility each day. Generally, when the number of

players is larger than the capacity of the iris habitat, the game follows an oscillatory dynamic

and does not converge.

No-information condition with learning

Fig 2 shows how the game evolves in the no-information condition with 2,000 participants

through 100 seasons with learning (L = 0.5). Number of visitors in selected days (Fig 2(a)) and

average utility per day (Fig 2(b)). Adding learning leads to weak convergence, that is, the proba-

bility that players will change their behaviour between seasons becomes lower and lower and

converges to zero. Mathematically, the probability of change between consecutive seasons

approaches zero, but the probability that from a certain season onward no changes will occur is

also zero. Although the composition of the people who stay at home every season varies, the var-

iation rates become lower over time (see Fig 7 below and p. 2 in the supplementary materials).

Full-information condition without learning

Fig 3 shows plots for the number of visitors in selected days (Fig 3(a)) and the average utility

per day (Fig 3(b)) in the full-information and no-learning model (L = 1). The average utility

remains negative, and the results keep fluctuating.

Fig 1. Visitation pattern in no-information, no-learning condition (N = 2000, p = 0.5). Fig 1(a) describes the number of visitors in

selected days for 2,000 participants across 100 seasons with no learning (L = 1). Fig 1(b) describes the average revenue for the visitors for

each day.

https://doi.org/10.1371/journal.pone.0308341.g001
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Fig 4a and 4b shows the number of visitors with 2000 players and average utility per day

with no learning (L = 1) with information. Four consecutive seasons are shown. The oscilla-

tions continue forever.

The no-information and full-information conditions differ in their oscillation patterns. In

the no-information model (Fig 4c and 4d) players oscillate randomly between days but the

number of visitors in each day remains approximately constant between seasons. This is due

to the law of large numbers, stating that if the number of players is large enough, the number

of players per day will be, with high probability, close to the expected value. However, the

numbers do fluctuate, and especially in days with low attendance these fluctuations may be sig-

nificant percentage-wise. In the full-information model, after a day becomes congested, all the

players move to a non-congested day (including home) and continue oscillating without being

able to break this pattern (Fig 4a and 4b). The results are shown for seasons 93–96. However,

the oscillating behaviour starts at an early stage, after 3 or 4 seasons, and remains approxi-

mately stable.

Fig 2. Visitation dynamic in the no-information with learning scenario across 100 seasons (N = 2000, p = 0.5). Fig 2(a) shows number of

visitors in selected days; Fig 3(b) shows average utility per day.

https://doi.org/10.1371/journal.pone.0308341.g002

Fig 3. Visitation dynamic in the full-information no-learning condition (L = 1) across 100 seasons (N = 2000). Fig 3(a) shows the number of

visitors in selected days; Fig 3(b) the average utility per day.

https://doi.org/10.1371/journal.pone.0308341.g003
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Full-information condition with learning

Fig 5 shows the distribution of visitors for each day (Fig 5(a)) and the average utility (Fig 5(b))

for the full-information scenario with learning after 100 seasons (N = 2000, L = 0.5). As can be

seen, equilibrium is almost reached, and visitors enjoy positive utility almost every day (we ran

a simulation with 1000 seasons and varying values of L, demonstrating similar results across

different L values; see Figs 1, 2 and 6, technical supplement). Fig 5(c) reports the results of an

analysis of the preferences of players who visited each day. It demonstrates that in an equilib-

rium state, the average utility of players who visited is higher than that of the players who

stayed at home. The equilibrium, however, is not a social optimum because some players with

Fig 4. Visitation dynamic in the no-information (c,d) and full-information (a,b) no-learning conditions across 4

consecutive seasons (all days) (N = 2000).

https://doi.org/10.1371/journal.pone.0308341.g004

Fig 5. (a,b). Visitation pattern in the full-information with learning condition (N = 2000, after 100 seasons). Fig 5(a) distribution of visitors for each

day; Fig 5(b) average utility; Fig 5(c), average preference of visitors per day (full-information, with learning condition) (N = 2000, after 100 seasons).

https://doi.org/10.1371/journal.pone.0308341.g005
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a preference as low as 1.37 visited the reservation while others with a preference as high as 2.98

stayed at home (see p. 3 in the supplementary materials for complete analysis).

An important distinction between the no-information and full-information conditions

with learning, is that adding learning to the full-information condition leads to a stable situa-

tion where some fraction of the population visits the reserve while the rest never do, whereas

in the no-information condition with learning, some players continue to change their choices,

Fig 6. Black Iris, Ness Ziona; photograph: Oren Perez.

https://doi.org/10.1371/journal.pone.0308341.g006
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but the probability of change becomes lower and lower and converges to zero. This is shown

in Fig 7.

Fig 8 describes the number of visitors (Fig 8(a)) and the average utility (Fig 8(b)) for visitors

on selected days for the information model with learning during the first 100 seasons

(N = 2000, L = 0.5).

We also tested another scenario (in the with information with learning condition) in which

new agents, with no memory of the game’s history, replace part of the population (simulating

potential migration or turnover). We tested two scenarios with 10 and 20 percent change. We

found that the introduction of new agents prevents the game from converging. However, aver-

age utility remains positive for most players in the 10 percent scenario, but the percentage of

players with positive utility decreases significantly as the number of new entrants increases.

We provide detailed graphs of this analysis in the technical supplement.

Fig 7. Stability and behavioural change in the no and with information conditions (with learning).

https://doi.org/10.1371/journal.pone.0308341.g007

Fig 8. Visitation dynamic in the full-information with learning condition across 100 seasons (N = 2000, L = 0.5). Fig 8(a) describes the number of

visitors on selected days; Fig 8(b) describes average utility.

https://doi.org/10.1371/journal.pone.0308341.g008
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Testing the model against real data: the behaviour of bats around

waterholes

To validate our model, we searched the literature for data on which our model can be tested.

We found a useful testbed in a study conducted by Adams and Thibault on the behaviour of

bat populations in a water-limited environment [25]. They conducted a fine-grain analysis of

overlapping visitation times at waterholes to test the hypothesis that bat species temporally

partition the use of water holes that are too small to accommodate spatial separation and

simultaneous use. Their findings indicate that ‘bats drinking at small waterholes structure use

of the resource on several levels, one of which is to temporally space visitations across species,

perhaps to avoid overcrowding’ [25: 470]. Their research constitutes an empirically verified

example of mammals using fine-grain temporal partitioning to facilitate coexistence in water-

stressed environments. We used the field setting of their study as the empirical basis of the

simulation. The research considered a single waterhole that was shared by five myotis species,

a closely related group of ecologically similar species. The study focused on a period of 5.5

hours that started 30 minutes before sunset [25: 467]. Data on arrival times were categorized

into 10-minute intervals (time was converted to minutes after sunset (MAS)).

We used our model of no-information with learning (with some necessary modifications)

to test whether it can yield an equilibrium like the one demonstrated by Adams and Thibault.

The primary modification we introduced was that each bat type has a slight preference to be

with its own type. The game unfolds according to the following rules.

After the first round, each bat, i, collects a utility, calculated using the formula:

R ¼ f di; n dið Þ;Ci; qtype; z
� �

ð6Þ

where di is the time slot (MAS) chosen by bat i and n(di) is the number of bats that chose the

same time slot (i.e., di). As in the original model, f decreases as n(di) increases and becomes

negative for a large n(di), depending on an exogenous variable, z, which represents the maxi-

mum number of bats that can jointly access the waterhole. We also assume that the utility of

the bat is proportional to the percentage of bats of similar type that visit the waterhole in the

same time slot. We assume that if the number of bats visiting the waterhole surpasses threshold

z, which is identical for each bat, the utility of that bat becomes negative: f = −Ci. Ci represents

the energy wasted by the bat if it arrives at the waterhole but cannot access the water. The fol-

lowing rules describe the utility that bats receive as a function of the number of other attending

bats. We assume that the amount of water remains constant throughout the day and is refilled

between days.

qtype ¼ n% for each i ð7Þ

f di 6¼ 0; n dið Þ; qtype;Ci; z
� �

¼
z

n dið Þ
�
ntype ið Þ

n dið Þ
if

z
n dið Þ

�
ntype ið Þ

n dið Þ
� 1:Otherwise

f di; n dið Þ;Ci; zð Þ ¼ � Ci ðthat is; if the number of bats arriving is larger than the

capacity of the waterholeÞ

ð8Þ

f di ¼ 0; n dið Þ;Ci; zð Þ ¼ 0 ðif the bat remains at its roost it receives no utilityÞ ð9Þ

We assume that the bats have access only to data regarding the number of bats who were

present at their chosen MAS. We further assume that the bats use the following strategy: each

bat starts by randomly choosing a time slot after sunset (an MAS). Each MAS is assigned an

equal probability. After each day, the bat assesses its utility. If the utility is positive, it continues
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with the same choice the next day. If the utility is zero or negative, it chooses its behaviour for

next day based on the following rule:

it chooses not to visit the waterhole with probability 1 − p, and with probability p chooses a

random MAS that does not include staying at the roost.

We incorporated the same learning mechanism we used in the previous simulations: if the

bat experienced negative utility, it multiplies p by a constant L<1 (set in the simulation to 0.5).

The learning mechanism means that bats become increasingly less inclined to explore other

visiting days after repeatedly experiencing negative results.

Fig 9(a) and 9(b) show the results for 500 and 2,000 bats, respectively, with 11 time slots

after 100 days. In both cases, the bats manage to partition themselves into the different time

slots, where they also self-separate by types, almost all time slots having one or at most two dif-

ferent types of bats. In the 2,000 case, with the increasing congestion pressure due to the higher

demand that exceeds the capacity of the waterhole, each time slot is dominated by a single type

of bat. Moreover, because of the heightened congestion pressure in the 2,000 case, some bats

are pushed out and need to look for alternative water sources (see p. 7 in the supplementary

materials for the raw data for both figures).

Discussion

To situate our work within the broader landscape of agent-based modeling (‘ABM’), it is

instructive to consider the framework proposed by Riccardo Boero and Flaminio Squazzoni

[26]. They distinguish between three types of agent-based models: ‘case-based models,’ which

target specific empirical phenomena with a defined space-time context; ‘typifications,’ which

target a specific class of empirical phenomena sharing some idealized properties; and ‘theoreti-

cal abstractions,’ which target a wide range of general phenomena without direct reference to

reality. Our model falls within the category of ‘typifications,’ as it aims to develop better under-

standing of the dynamics of a general class of social dilemmas: temporal partitioning

Fig 9. Bat’s temporal visitation distribution per type. Fig 9(a) and Fig 9(b) show the results of the simulation for 500 and 2,000 bats, respectively, with

11 time slots after 100 days.

https://doi.org/10.1371/journal.pone.0308341.g009
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congestion games. The specific case used in our model—the Black Iris Game—serves as a heu-

ristic anchor to illustrate the general dynamics of TPGs as a distinctive class. Our aim is not to

make predictions about the specificities of the Black Iris game, but rather to explore the general

principles governing TPGs. Our model shares similarities with the ’theoretical abstractions’

category, as we use it to examine, in an abstract theoretical manner, the distinction between

complexity-based and game-theoretic analytic modeling approaches, as well as to critique the

level-k approach to the depth-of-reasoning problem.

We begin with a general summary of our results, then discuss their theoretical implications

and policy ramifications, before concluding with limitations and future research directions.

Generally, we found that for both the no-information and with-information conditions, when

there is no learning, and assuming the number of players is larger than the capacity of the iris

habitat, the game does not converge, and an oscillatory dynamic develops (if the number of

players is small enough so that they can all visit the reserve within the capacity limits of a single

season, equilibrium is reached provided that the players use randomization in their strategies,

as we assume here, even without learning). Adding information does not resolve the diabolic

nature of this game. However, incorporating learning into both the no-information and with-

information conditions leads to convergence. An important distinction between these condi-

tions is that adding learning to the with-information condition results in a stable equilibrium

where a fraction of the population visits the reserve while the rest never do. In contrast, in the

no-information condition with learning, some players continue to change their choices, but

the probability of change decreases over time and eventually converges to zero. The provision

of information leads therefore to a more robust equilibrium but at the cost of causing social

separation in the use of the common pool. Although the no-learning models fail to achieve

equilibrium, they offer one advantage: a fairer utility distribution. Players may visit the flowers

and experience positive utility for several seasons until an overflow of visitors occurs, causing

some players to forgo the next season, allowing new players to visit (this outcome, however,

depends on the size of p: if p is too large, it could increase the frequency of oscillations, causing

a loss of utility for all). We also tested another scenario (in the with information with learning

condition) in which new agents, with no memory of the game’s history, replace part of the

population. We found that the introduction of new agents prevents the game from converging.

This outcome can be averted by assuming that new entrants acquire knowledge of the game’s

history through a socialization process within their community. Our model and results also

have broader theoretical implications. First, we demonstrated the advantages of the computa-

tional approach compared to the game-theoretical one. A major limitation of the analytical

approach is its inability to offer insights into the social dynamics that determine whether the

system will converge to one of the multiple equilibria identified through analysis. In contrast,

the computational approach enabled us to illuminate the dynamics of TPGs, thus surpassing

the constraints of the analytical method.

Second, we would like to distinguish our approach to modeling the destructive meta-rea-

soning feature of TPGs from the level-k reasoning model, and shed light on its limitations. A

standard level-k model assumes that the population is partitioned into types that differ in their

depth of reasoning [27]. A level-0 type is nonstrategic and follows a simple decision rule that

can be based on a uniform distribution over the set of strategies or some salient aspect of the

game (e.g., the existence of a peak blossom day, in our case). A level-k type (Lk), behaves as if

the player provides the best response to the belief that the other player is a level k-1 type. Thus,

given a particular game, the model is characterized by: (a) an L0 behaviour, which is the start-

ing point for iterative reasoning, and (b) a distribution of types.

Theoretically, this model can capture the reflexive structure of the Black Iris game and simi-

lar TPGs, where players reflect on each other’s thoughts. However, employing this framework
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to capture the dynamics of the Black Iris game does not seem to generate fruitful insights. Let

us assume that the blossom season lasts for 2x+1 days. The peak days occur at day x + 1, and

the community consists of 2x+1 types of equal distributions L0, L1, L2. . . L(2x-1). In this sce-

nario, L0 picks the focal day of maximal blossom (x+1). L1, responds to the choice by randomly

choosing between x and x+2, and so on. This could lead to NE, with each type populating a

day if the number of players of each type perfectly fits the maximum capacity of each day. In

reality, it is unlikely that the distribution of K types would optimally fit the capacity of the dif-

ferent time slots, generating a destructive oscillatory behaviour and leading to poor results for

all players. Previous research has found that the most frequent types are L0, L1, and L2 [28].

People find it extremely difficult to go deeper than three levels in their reflexive reasoning. If

we assume the existence of three types, this could generate indefinite oscillation in situations

where the time partition is larger than three. Overall, we do not think that the K-level model

provides a useful framework for simulating the dynamic of such games. This conclusion

reflects a more general problem: deterministic strategies taken by each player are likely to lead

to poor general results because of reduced utility resulting from many players making the

same decision. This is a well-known result in game theory and distributed computing, and it is

usually solved by introducing randomness into the players’ reasoning [29].

Based on the above discussion, it seems that the most likely approach of non-naive players

to the strategic complexity of TPGs, especially under conditions of over-crowdedness, is to

incorporate some measure of randomness into their strategy. This reflects the fact that in the

absence of external coordination, there is simply no way in which you can second-guess all the

other players. Any attempt of a player to out-predict the others is likely to lead to infinite

regress: a descent into a mental rabbit hole [14]. Thus, our model assumes that all the players

have an equal level of reasoning depth (which we leave unspecified) that is reflected by using

randomness in the strategies.

How would different types of regulatory intervention affect the players’ behaviour? Intro-

ducing fees will change the utility function without affecting the other parameters of the prob-

lem. Adding fees will shift the utility function and change the resulting equilibrium

quantitatively but not qualitatively. The outcome, either way, will be fewer visitors to the

reserve, with no improvement in coordination. This result may be problematic from a distrib-

utive justice perspective by permanently preventing people who could have enjoyed the reserve

from visiting. Using a lottery based on pre-registration achieves the benefits of equilibrium,

including the benefit of visitor diversity, without the need to share information. But this

requires stronger involvement of an external regulator. It could also lead to an inferior equilib-

rium that is far from the social optimum because people with high preferences might lose the

lottery and people with low preferences might be exposed to excessively high congestion levels.

Finally, we would like to address several limitations of our analysis that reflect its relatively

abstract nature. While we grounded our model in several empirical cases from different con-

texts (natural recreation goods, publication slots in academic journals, and waterholes in arid

regions), we have not attempted to validate it comprehensively across all these domains using

actual data. We provided a partial validation of our model using data from research on bats’

behavior in a water-limited environment. However, this validation had a limited goal: we

aimed to demonstrate the model’s general plausibility (its capacity to generate results like

those observed in the field). We did not attempt to calibrate the model to provide accurate pre-

dictions in any of the domains on which it was grounded. While our primary goal is theoreti-

cal—to gain a better understanding of the dynamics of temporal partitioning games as a

distinct class—it could still be beneficial to obtain data on human behavior in TPGs. Such data

could allow us to corroborate and revise our modeling of players’ strategies, particularly in

terms of how we model learning. In a recent paper Wijermans et al proposed to combine
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ABM with controlled behavioural experiments [30]. We believe this approach offers a promis-

ing path. Conducting behavioral experiments in a TPG, for example, could be instructive in

understanding the strategies human participants use in such contexts. This empirically

grounded understanding could then be applied to revise the TPG simulation.
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