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Abstract

The average lifespan of particles, a crucial parameter in nuclear physics, is essential for

identification purposes. Modern particle detectors excel at recognizing individual radioactive

nuclei arrivals and their subsequent decay events. However, challenges arise when match-

ing arrivals with departures, especially when departures are only partially observed. One

inefficient approach involves conducting experiments with very low arrival rates to facilitate

matching. The kiloelectron-volt E(keV) emission is obtained during this radio active process.

This study focuses on the meticulous surveillance of the average keV emission from partially

observed events within the domain of nuclear physics. To accomplish this, the methodology

employs the statistical approach known as Distance Weighted Mean (DWM), integrated

with the application of censored control charts. The utilization of censored control charts

allows for the effective management of incomplete data, enabling researchers to make

informed decisions despite potential limitations in observation. We propose a DWM based

exponentially weighted moving average-cumulative sum (DWM-EC) control chart for moni-

toring kiloelectron-volt E(keV) data. The proposed charts is developed for Weibull lifetimes

under type-I censoring. For the construction of an efficient control charting structure, we

employed the conditional median (CM) methods. The goal is to find changes in the mean of

Weibull lifetimes with censored data with known and estimated parameter conditions. The

performance of the proposed DWM-EC chart is evaluated by the average run length (ARL).

Besides a simulation study, a real-life data set on E(keV) related to the alpha decays of 177

Lutetium isotope is also discussed.

1. Introduction

A classic example of a Poisson process over time is radioactive decay. The physics behind this

statistical framework is as follows: lives follow an exponential distribution with a mean equal
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to the inverse of the decay rate, and decay events are independent as long as the decay rate is

known. In nuclear physics, the mean lifespan is crucial because it accurately captures the struc-

ture of the underlying quantum mechanical states. Notably, radioactive alpha decays longer

than those anticipated by a simple model can result from significant changes in nuclear struc-

ture between beginning and final states [1]. In particle physics, estimating the mean lifespan

under different experimental configurations is a well-known statistical issue [2].

Modern experiments are able to manufacture radioactive species on a continuous basis and

record their decays concurrently because of sophisticated particle detectors and data collecting

systems that can distinguish between the arrival of single radioactive nuclei and their subse-

quent decays [3, 4]. For the sake of generality, these arrivals and decays are referred to as

departures since they frequently stay mismatched, making it impossible to directly link an

arrival to a departure. A specific arrival and departure pair may only be identified with confi-

dence when low arrival rates and short mean lifetimes are present, as evidenced by the obser-

vation of just one departure between successive arrivals.

When certain arrivals or departures are mislabeled or only partially noticed, problems

might occur (censored). This work focuses on studies when structural restrictions of the parti-

cle detector prevent the collection of all departures. For example, when alpha radioactive

nuclei produced in fusion events are implanted onto a detector, they are usually placed in close

proximity to the detector’s surface. As a result, around half of the departures are missed

because the alpha particle escapes the detector. This results in an uneven number of arrival

and departure times that cannot be consistently connected, along with the problem of match-

ing arrivals with departures. The challenge of determining the mean lifetime and keeping track

of such data using the suggested censored control charts is discussed in the study situations.

In statistical process control (SPC), control charts are an effective tool for tracking and ana-

lyzing operations across time. They support businesses in making ensuring that their proce-

dures are reliable, consistent, and kept within predetermined bounds. Control charts make it

possible to spot patterns and variances that could point to possible problems or process

enhancements. Control charts are widely used in many different sectors and are essential for

process optimization and quality control.

In the manufacturing industry, control charts are widely utilized to oversee and regulate

production procedures, guaranteeing uniform product quality and reducing errors. In the

medical field, control charts are used to track medical mistakes, keep an eye on patient out-

comes, and pinpoint areas where procedures may be improved. They are used in the finance

industry to track important financial indicators and identify patterns and abnormalities, such

as transaction processing times, mistake rates, and stock price swings. In the service business,

control charts are used to track customer satisfaction ratings, process efficiency, and service

delivery parameters. In order to assist teams improve software quality and delivery, control

charts are used in software development to track errors, code reviews, and development cycle

duration. Control charts are used in environmental monitoring to monitor pollution levels,

other environmental indicators, and the quality of the air and water. SPC charts are a useful

tool for tracking and enhancing supply chain operations, including order fulfillment, inven-

tory control, and delivery schedules.

Control charts enable organizations to keep an ongoing eye on a process to make sure it’s

functioning within reasonable bounds. They aid in separating variations with common causes

—those innate to the process—from variations with unique causes—those brought on by out-

side influences or particular occurrences.

To ensure the accuracy and dependability of the analysis while using control charts, it is

crucial to collect enough representative data and to sample properly. Furthermore, control
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charts are only one component of a larger statistical process control system that also consists

of methods for process data gathering, and analysis.

Partially or fully censored data are frequently encountered in reliability engineering and

medical research, two domains where filtered data is highly relevant. When an observation’s

true value is unknown due to a restricted measurement or a continuing observation at the con-

clusion of the research period, this is known as censoring. There are several different ways that

data may be censored, including progressive, Type-II, interval, and Type-I censoring. The

kind of statistical analysis that may be performed on the data depends on the censoring

method. Erroneous conclusions and biased estimations might arise from disregarding cen-

sored data or interpreting it as missing. As a result, it’s critical to create statistical techniques

that can effectively handle censored data. As was previously mentioned, one technique for

keeping an eye on data that has been suppressed is the use of control charts. Researchers can

increase their grasp of the underlying phenomena they are studying and acquire more precise

estimations of parameters by taking into consideration censored data. Better decision-making

and better product or process design may result from this, and these developments may ulti-

mately have a big influence on a lot of different sectors and industries, like engineering,

manufacturing, healthcare, and medicine.

Finding assignable causes in lifetime data is a difficult yet fascinating undertaking, particu-

larly in industrial and medical research. Nevertheless, inadequate failure-time information—

also referred to as filtered data is produced by time and budget constraints. The performance

of traditional control charts, such as Shewhart charts, to track trials for potential assignable

reasons for process improvement is significantly lower than that of censored control charting

based on CEV. New control charting techniques were suggested by [5, 6] for handling entire

data. When it comes to handling filtered data, traditional charts typically do not respond

quickly enough, which limits their ability to discriminate. presented a one-side chart utilizing

the conditional expected value (CEV) in order to get around these unfavourable aspects of the

monitoring techniques for censored data. Through an empirical analysis, the authors demon-

strated how the concept enables fast process degradation identification for heavily filtered data

monitoring. [7] proposed Shewhart control charts using the CEV approach; they were later

shown to work well for heavily filtered data in industrial and medical applications. [8] sug-

gested EWMA control charts with lower and upper sides based on the CEV method to identify

changes in the Weibull quality attributes mean. Similarly, to monitor type-I censored data

assuming the gamma and Gompertz distributions, respectively [9, 10], presented CEV EWMA

charts. Recent advancements in control charts for data monitoring in real-world applications

are evidenced in references [11–18].

Control charts were also introduced [19, 20] to monitor type-I censored data, adhering to

the CEV method. Because most lifespan distributions are skewed, the CEV technique might

not be applicable, it should be highlighted. In contrast to the current methods [21], suggested a

Shewhart chart based on conditional median (CM). In a simulated analysis, the authors [22–

26] demonstrated that their hybrid EWMA control chart with repeated sampling works better

than CEV charts. This study focuses on type-I censoring, which is often used in industry, even

though monitoring methods for type-II censored data have been reported in the literature. Dif-

ferentiating between the CM, imputation, and CEV approaches is crucial. From a methodolog-

ical standpoint, all three strategies replace missing or censored data in order to improve the

estimate. Imputation techniques are employed to replace missing observations in the data,

while the conditional mean and conditional median are used to replace censored observations

in the CEV and CM, respectively.

This study introduces the previously unexplored in the literature Distance Weighted Mean

—exponentially weighted moving average-cumulative sum (DWM-EC) control chart based on
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CM. Because of its adaptability and usefulness in reliability engineering and nuclear physics,

the Weibull distribution’s mean level is monitored in this study with an emphasis on type-I

censored data. However, the suggested method may be expanded to include other reasonable

distributions of life expectancy. When it comes to assignable causes, the innovative charts per-

form better than traditional CM-based EWMA charts. The study also examines the perfor-

mance of the DWM-EC chart when the maximum likelihood estimation technique is used to

estimate the scale parameter. The effectiveness of the recommended charts is evaluated using

the average run length (ARL).

Additionally, this page provides a comparison between the censored DWM-EC charts with

the censored EWMA and CM-CUSUM charts.

The study’s remaining sections are arranged as follows: Section 2 displays the CM’s deriva-

tions. In addition to parameter estimates, Section 2 provides the censored DWM-EC’s design

structure. In Section 3, it is explained how the censored DWM-EC, EWMA, and CUSUM

charts performed at various censoring rates. To demonstrate the suggested technique, a dataset

on the reaction time of an experiment using electric sockets is shown in Section 4. Section 5

has closing thoughts.

2. The cm based DWM-EC control charts

This section introduces the Conditional Median based Distance Weighted Mean—exponen-

tially weighted moving average-cumulative sum (CM-DWM-EC) charts to monitor the mean

of the Weibull distribution, that is, the variable of interest X denotes the lifetime of a product

that is assumed to follow a Weibull distribution. The Weibull distribution is the most com-

monly used probability distribution in reliability analysis, engineering, and medical studies.

The probability density function of a Weibull random variable X is given by:

f ðx; a; bÞ ¼
b

ab
xb� 1exp � ½x=a�b

� �
x > 0 ð1Þ

where α is the scale parameter and β is the shape parameter, respectively.

Lets denote Xi1, X i2 . . ... X in the actual lifetime while Ti1, T i2 . . ... T in, i = 1, 2. . ., δ denote

the lifetimes of failed units in a life testing experiment, i.e., obtained after exercising the type-I

right censoring mechanism. Here, δ denotes the subgroup size, which may be variable depend-

ing upon the situation. The r is random here while n and C (censoring time ‘C’) are fixed in

advance.

Then, we compute the censoring rate by Pc = 1-F(x = c; α,β), where F(x; α,β) is the cumula-

tive density function of the Weibull distribution, that is, P(X�C) = 1−exp(−[C/α]β). The mean

is denoted by μ and is given as:m ¼ EðxÞ ¼
Z1

0

xf ðxÞdx ¼ aG 1þ 1

b

� �
.

The Conditional Median is expressed as:

m ¼ � a0
bln

2 � expð� DcÞ

2

� �� �1=b0

ð2Þ

where Dc ¼ ðC=a0Þ
b0 , lower incomplete gamma function Gðx; aÞ ¼

Z x

y¼0

ya� 1expð� yÞdy, and

α0, β0 are the stable-process values of α and β, respectively.

Further to this point, we will fix the shape parameter and focus on the scale parameter [8],

i.e., to calculate the CM, we suppose that the scale parameter is fixed and known. However, in

practice, we often estimate unknown parameters from the Phase-I dataset. For the estimation
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of the unknown scale parameter, the method of maximum likelihood estimation (MLE) is dis-

cussed in the next section. After calculating the CM we replace the Censored observations by

CM and use the transformed data to calculate the Distance Weighted Mean using the formula

given below:

Let the observations y1, y2, . . .. . .. . .. . .. . ...yn shows the transformed data with weights w1,

w2,. . .. . .. . .. . ...wn

TDWM ¼

Xn

i¼1

wiyi

Xn

i¼1

wi

ð3Þ

The weighting coefficient for Yi is computed as the inverse mean distance between yi and

the other data points.

wi ¼
k

jyi � yjj
ð4Þ

Where k is a positive quantity. In literature mostly it is taken as 1 or n-1.

2.1 Estimation of α
To estimate the unknown scale parameter, we first write the likelihood function. The MLE

under type-I censoring is given as a^MLE ¼
1

r ½
Xr

i¼1

�iðXiÞ
b0 þ ðn � kÞCb0 �

1
b0 , where r represents

the censored units per subgroup, n represents the sample size, Xi (i = 1,2,3,. . .,n) shows the life-

time from the Weibull distribution [11].

2.2 CM based DWM-EC control charts

To define DWM-EC control chart, assume λ1,λ2,λ32[0,1], the CM-DWM-EC statistic in a rela-

tive form can be defined as follows:

HDWCMðcmÞi ¼ maxfHDWCMi� 1 þ
�DWCCMi � mo;mog=minfHDWCMi� 1 þ

�DWCCMi
� mo;mog; i

¼ 1; 2; 3; . . .; d ð5Þ

The quantitymo in Eq (5) is a barrier and used to increase the sensitivity of the CM Based

DWM-EC control chart. Thus, it needs to be chosen carefully and a very natural choice ismo =

a0G 1þ 1

b0

� �
. However, the starting valueHDWCM0 is assumed zero in this study. The

HDWCM is the EWMA based test statistics calculated using the DWM estimator. As discussed

previously, for both upward and downward shifts in the process mean, theHDWCMi statistic

increases (Eq 5), and hence only the upper control limit is required to detect out-of-control

signals. Let the upper limit is denoted by UCLHDWCM(CM) for the CM charts, respectively. Fur-

thermore, the control limits will always be greater than one, as the minimum value is in the

denominator of Eq.3.

The ARL is the most widely practiced performance assessment criterion and the ARL com-

puted from the in-control data is known as the in-control ARL and denoted by ARLo, while

the ARL calculated from Phase-II data (that is, from a shifted process) is known as the out-of-

control ARL and denoted by ARL1. In general, the ARL is the average number of points plotted
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on a chart before a special cause signal is raised. Generally, ARLo is fixed large while a chart

with a smaller ARL1 is said to be more efficient than the chart having a larger ARL1.

3. Performance evaluations

The efficiency of the CM-DWM-EC charts is discussed in this section. Besides this, a compari-

son of CM-DWM-EC charts to the CM based EWMA and CM based CUSUM charts is also

given in this section.

To investigate the efficiency of the charts, the Monte Carlo simulation approach is used to

calculate the ARL. The ARL assessment of the CM-DWM-EC charts is discussed assuming

known and estimated scale parameter cases while keeping fixed the shape parameter.

3.1 Stepwise algorithm for assessing CM-DWM-EC chart performance

For assessing the performance of CM-DWM-EC charts, we fixed the desired ARL0 and find

the corresponding UCL values, respectively, for the given δ and n. The steps to determine the

control limits and ARLs for the pre-fixed values of Pc, mo, n and ARL0 are given below:

1. Fix Pc (Censoring rate) and subgroup size. Use the Phase-I data set to estimate α if it is

unknown.

2. Substitute the censored observations with their Censored median (CM).

3. Now Compute the DWM statistic data for different subgroups.

4. Compute the CM-DWM-EC statistics data based on Eq 5.

5. Then, calculate the (1−p)−th quantile point, where p is pre-specified false alarm probability.

6. Repeat the above step L-times (e.g., 100000 times) and compute the average to have the

UCLs of the CM-DWM-EC chart.

7. Continue to plot the value of the CM-DWM-EC statistic against the subgroup numbers

until the test statistic crosses the control limit. Record the corresponding subgroup number

at which the first out-of-control signal appears.

8. Repeat Step 4 say M times (e.g., 100000 times) and compute the average, which is the ARL0.

To calculate the out-of-control ARL, generate data from the Weibull distribution with the

shifted parameter and check it against the monitoring threshold in Step 3. Store the subgroup

numbers at which the monitoring statistic first falls beyond the control limit. Repeat this step

many times and compute the average, which is ARL1.

Effect of estimation. From Table 2: The findings reveal significant insights into the per-

formance of different control charts under various conditions. Specifically, comparing ARL1

values for different shifts and censoring rates, it’s evident that the CM-CUSUM chart outper-

forms the CM-EWMA chart for higher shift i.e 30% increase in shifts. Furthermore, the impact

of parameter estimation on the CM-DWM-EC chart is noteworthy, with ARL1 values being

smaller when parameters are known compared to when they are estimated. Additionally, ana-

lyzing the ARL1 values for different shifts and censoring rates with the CM-DWM-EC chart

demonstrates a clear trend: for increasing shifts, ARL1 values decrease as censoring rates

increase, and vice versa for decreasing shifts. However, the superiority of the CM-DWM-EC

chart remains consistent across various combinations of shifts and censoring rates, indicating

its robustness. These findings underscore the effectiveness of the CM-CUSUM chart over the

CM-EWMA chart and highlight the impact of parameter estimation on the CM-DWM-EC

chart. Moreover, the consistent superiority of the.
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From the Tables 1–3 it is also observed that as the censoring rate increases from 20% to

40% for a 30% increase in shift, the ARL1 values rise, indicating lack in performance. Con-

versely, for a 20% to 40% shift at the 30% decrease in shift level, the ARL1 values decrease, dem-

onstrating that the chart’s efficiency improves with the increase in censoring rates for a

specified decrease shift level.

From Tables 1–3 it is observed that, when the censoring rate is low, the CM-DWM-EC

chart detects an increasing shift in the scale parameter more effectively than a decreasing shift.

However, when censoring rates are high and shifts are decreasing, the chart’s practicality is not

diminished when compared to the CM-CUSUM chart. Overall, for both increasing and

decreasing shifts, the CM-based DWM-EC chart outperforms its counterpart. The chart’s

average run length (ARL) attribute is unbiased, which implies that while the process is under

control, the ARL never surpasses the ARL0. The performance of the chart, like those of other

charts, is significantly connected with parameter estimate, and a large sample size is advised to

overcome this estimating impact and attain the desired results.

4. Applications

An illustrative example involving kiloelectron-volt (keV) data is utilized to showcase the pro-

posed control charting methodology. The data, provided in S2 Appendix, is obtained by con-

verting electron-volt (eV) measurements to keV by dividing by 1000. The data distribution is

approximated as a Weibull distribution with an unknown scale parameter, estimated using

easyfit software.

The Fig 1 represents the metastable isomer 177m Lu is coordinated to a very stable complex

(left side). During the decay via internal conversion the nucleus excess of energy is transferred

to an inner electron causing an auger electron cascade (center). After the cascade the atom is

in a highly charge state, the chemical bonds are broken and the freed 177 Lu can be separated

(right side).

Table 2. Out-of-control ARL values for CM-CUSUM, CM-EWMA and CM-DWM-EC control chart sequences for n = 3 with MLE.

a
_
¼ 0:475; b ¼ 0:5;ARL0 ¼ 100; l1 ¼ l2 ¼ 0:2; l3 ¼ 0:3:.

n 3

Pc CM-EWMA CHART CM-CUSUM CHART CM-DWM-EC CHART

Shifts Shifts Shifts

30%

increase

30%

decrease

20%

increase

20%

decrease

30%

increase

30%

decrease

20%

increase

20%

decrease

30%

increase

30%

decrease

20%

increase

20%

decrease

0.2 10.74 5.46 16.65 14.10 8.98 5.57 10.93 12.94 6.77 4.49 6.22 11.81

0.3 12.25 4.49 27.53 14.13 11.97 4.44 24.50 11.07 9.57 3.41 22.14 9.98

0.4 23.11 4.05 48.78 9.11 22.83 1.03 50.45 7.28 21.28 1.91 47.35 5.09

https://doi.org/10.1371/journal.pone.0308822.t002

Table 1. Out-of-control ARL values for CM-CUSUM, CM-EWMA and CM-DWM-EC control chart sequences for n = 3 and
ARL0 ¼ 100; a ¼ 0:5;b ¼ 0:5; l1 ¼ l2 ¼ 0:2; l3 ¼ 0:3.

n 3

Pc CM-EWMA CHART CM-CUSUM CHART CM-DWM-EC CHART

Shifts Shifts Shifts

30%

increase

30%

decrease

20%

increase

20%

decrease

30%

increase

30%

decrease

20%

increase

20%

ecrease

30%

increase

30%

decrease

20%

increase

20%

decrease

0.2 6.72 4.49 9.09 13.55 6.27 2.85 9.12 11.36 5.64 2.71 6.63 10.16

0.3 10.67 2.73 19.49 9.93 9.29 1.46 17.77 10.02 8.02 2.2 15.40 9.54

0.4 17.67 1.35 44.69 6.93 17.28 1 43.37 5.20 16.08 1.30 42.70 3.33

https://doi.org/10.1371/journal.pone.0308822.t001
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By Bootstrapping, selects samples of size 3, and the maximum likelihood estimation

method, employing the first 45 observations as phase-I data, determines the estimated scale

parameter as 1.85. Assuming a 45% censoring rate and a 30% decrease in mean as the shift to

be detected, the proposed hybrid control chart is formulated.

Fig 2 illustrates that the CM DWM-EC control charts do not signal any out-of-control indi-

cations until the 46th sample. To evaluate the efficacy of the proposal, a dataset comprising 20

observations is generated after the 45th subgroup. Introducing a 30% decreasing shift in the

mean of the Weibull distribution for the shifted data, with a censoring time of 58.4 and ARLo

= 47, the CM value is calculated as 15.56. Notably, for the shifted samples, the CM-DWM-EC

chart detects an out-of-control signal as early as the 2nd sample (refer to Fig 1).

5. Conclusion

This article introduces CM-DWM-EC charts for monitoring type-I censored data using CM

methodologies, focusing on keV data derived from eV measurements. The proposed control

charts’ effectiveness is evaluated across various conditions, including different shift types, sub-

group sizes, censoring rates, and parameter selections, comparing them to CM-EWMA and

CM-CUSUM charts. Illustrating the methodology with Weibull distribution due to its rele-

vance in reliability testing, the study also assesses the censored data charts’ performance under

estimated parameters. ARL analysis demonstrates that CM-based DWM-EC chart outperform

CM-EWMA and CM-CUSUM, attributed to the conditional median’s reduced sensitivity to

extreme observations, leading to fewer false alarms. ARL values decrease with higher censoring

rates but increase with larger shape parameter values, indicating enhanced chart efficiency.

However, the performance of censored charts suffers in the estimated parameter scenario,

Table 3. Out-of-control ARL values for CM-CUSUM, CM-EWMA and CM-DWM-EC control chart sequences for n = 7 with
a ¼ 1;b ¼ 0:75;ARL0 ¼ 200; l1 ¼ l2 ¼ 0:2; l3 ¼ 0:3:.

n 7

Pc CM-EWMA CHART CM-CUSUM CHART CM-DWM-EC CHART

Shifts Shifts Shifts

30%

increase

30%

decrease

20%

increase

20%

decrease

30%

increase

30%

decrease

20%

increase

20%

decrease

30%

increase

30%

decrease

20%

increase

20%

decrease

0.2 7.17 4.93 10.55 11.21 6.28 3.67 11.39 10.13 6.36 3.31 9.59 9.68

0.3 11.78 3.12 26.08 10.67 8.74 2.83 22.52 9.38 8.37 2.59 21.48 8.50

0.4 22.74 3.05 46.85 7.61 21.44 1.81 45.54 5.63 21.10 1 44.38 5.37

https://doi.org/10.1371/journal.pone.0308822.t003

Fig 1. Schematic representation of the decay process. (a) Decay scheme of 177m Lu to 177 Lu. (b) Process of bond

rupture.

https://doi.org/10.1371/journal.pone.0308822.g001
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emphasizing the importance of extensive Phase-I datasets to minimize estimation effects on

chart performance. Future research could explore non-parametric control charts and investi-

gate simultaneous estimation of shape and scale parameters’ impact.

This research introduces a novel Distance Weighted Mean based Exponentially Weighted

Moving Average-Cumulative Sum control chart specifically designed to monitor keV data

under type-I censoring conditions, commonly encountered in nuclear physics. By addressing

the challenge of monitoring keV emissions from partially observed events and incorporating

conditional median methods, the study enhances the detection of mean shifts in Weibull life-

times with censored data. The proposed control chart’s performance is validated through sim-

ulations and a real-life dataset related to the alpha decays of the 177 Lutetium isotope,

demonstrating its practical applicability. This research significantly advances statistical process

control by providing a robust tool for reliability engineering and nuclear physics, where han-

dling censored data is critical.

The limitations of the study are:

• Type-I Censoring Focus: The study is primarily focused on type-I censoring, which is often

used in industry, even though there are other types of censoring methods such as type-II

censoring that might be relevant and could provide additional insights if included.

• Assumption of Known Scale Parameter: The methodology fixes the shape parameter and

assumes the scale parameter is known. However, in practice, these parameters often need to

be estimated from the Phase-I dataset, which might introduce estimation errors.

• Specific Distribution Assumption: The study emphasizes monitoring the mean level of the

Weibull distribution, which is useful in reliability engineering and nuclear physics. However,

the methodology might not be directly applicable to other distributions of life expectancy

without significant adjustments.

• Simulation-Based Validation: The performance of the proposed control charts is evaluated

through simulations and a specific real-life dataset. While this provides some validation,

broader application and testing across different scenarios and datasets would strengthen the

generalizability of the findings.

Fig 2. CM-DWM-EC chart using 30% decrease in the mean for the E(KeV).

https://doi.org/10.1371/journal.pone.0308822.g002
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• Limited Real-Life Data: The study discusses a real-life dataset on E(keV) related to the

alpha decays of the 177 Lutetium isotope, but more diverse real-life examples could provide

a more comprehensive validation of the proposed methodology.

These limitations suggest areas for future research, such as exploring other types of censor-

ing, testing with different distributions, improving parameter estimation techniques, and vali-

dating with more diverse datasets.
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