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Abstract: The tractable preparation of Phase I drug metabolites is a critical step to understand the first-
pass behaviour of novel chemical entities (NCEs) in drug discovery. In this study, we have developed
a structure–electroactivity relationship (SeAR)-informed electrochemical reaction of the parent 2-
chlorophenothiazine and the antipsychotic medication, chlorpromazine. With the ability to dial-in
under current controlled conditions, the formation of S-oxide and novel S,S-dioxide metabolites has
been achieved for the first time on a multi-milligram scale using a direct batch electrode platform. A
potential rationale for the electrochemical formation of these metabolites in situ is proposed using
molecular docking to a cytochrome P450 enzyme.
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1. Introduction

Phenothiazine (PTZ) is a heterocyclic pharmaceutical lead structure in medicinal
chemistry [1], representing a major parent scaffold of antipsychotic drugs that have an
inhibitory effect against dopaminergic receptors, especially D2 receptor [2]. Derivatives of
PTZ have been extensively used to treat psychosis, including schizophrenia and bipolar
disorder [3]. While these medications are effective, side effects of PTZs include (1) the
autonomic and cardiovascular systems, endocrinologic, metabolic, hematologic, hepatic,
allergic/dermatologic, ophthalmologic, and anticholinergic effects; (2) the central nervous
system, including extrapyramidal symptoms, tardive dyskinesia, neuroleptic malignant
syndrome, seizure, and sedation; (3) the sexual and reproductive side effects, including
sexual dysfunction and teratogenicity [4]. These side effects are primarily caused by
the PTZs’ non-selective blocking of receptors in the central nervous system, including
dopamine (D1 and D2), muscarinic, histamine H1, and serotonergic 5-hydroxytryptamine
(HT) 2 receptors [5]. Clinical studies have shown that these side effects occur due to bioac-
tive metabolites, which may significantly contribute to the toxicity in humans [6]. Sulfoxide
metabolites have been annotated to be responsible for cardiotoxic activity [7], and the
7-hydroxylated metabolites of the PTZs form an electrophilic quinone imine intermediate,
which is responsible for mechanisms of drug-induced idiosyncratic hepatotoxicity [8]. PTZ
analogues are classified into three groups, as shown in Table 1 [1,9].

The 2-chlorophenothiazine (2CPTZ) is an important intermediate in the synthesis of
neuroleptic drugs, such as chlorpromazine (CPZ), perphenazine, and prochlorperazine [10].
CPZ is subject to a significant amount of first-pass metabolism, including hydroxylation,
N-dealkylation, N-oxidation, and S-oxidation [11–13]. Chlorpromazine (CPZ) is primarily
metabolised as chlorpromazine-S-oxide (CPZ-SO) and was found to have the same effect
as CPZ in the vasomotor and central nervous systems. Chemical methods to oxidise PTZ
derivatives to sulfoxide are shown in Scheme 1. Owens and co-workers prepared phe-
nothiazine sulfoxide (PTZ-SO) using aqueous nitrous acid and hydrogen peroxide at room
temperature (PTZs-SO, 95% yield, with CPZ-SO, yield 74%) [14]. Ryoji and co-workers
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investigated the preparation of sulfoxide compounds using aqueous hydrogen peroxide,
a tungstate complex, and a quaternary ammonium hydrogen-sulfate as a phase-transfer
catalyst in 95% yield [15]. Bosch and colleagues also reported sulfoxidation using nitric
oxide oxidation (CPZ-SO, 99% yield) [7]. Liu and colleagues used ferric nitrate nonahydrate
(Fe(NO3)3·9H2O) as a catalyst and oxygen as a green oxidant for the selective oxidation
of thioethers to sulfoxides, including CPZ with an 88% yield [16]. Stadler and Roth re-
ported a microfluidic electrochemical preparation of CPZ-sulfoxide [17]. In total, four
drugs were subjected to continuous-flow electrolysis, including the conversion of CPZ to
CPZ-SO with an 83% isolated yield. However, this technique has some limitations, includ-
ing (1) microfluidic-electrosynthesis can be complex to design, setup, and operate, and (2)
high-cost equipment. The recent application of homogeneous catalysis in electrosynthesis
has proven to be a strategy for controlling the chemo-, regio-, and enantio-selectivity of
reactions [18], but as of yet is not reported for sulfoxidation.

Table 1. PTZs’ structure and their respective classifications (type 1–3) and bioactivities.
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In this work, electrochemistry was explored as a green technique [19] to determine the
voltammetric behaviour [20] of PTZ analogues and synthesise the oxidation metabolites
of 2CPTZ and CPZ [21,22]. The aim was to gain a deeper understanding of the oxidation
outcomes of 2CPTZ and CPZ through electrosynthesis approaches and to examine how
these metabolites relate to both drug metabolites (in human) and in silico metabolism
predictions. Electrosynthesis advantages include: (1) a greener approach to synthesis, as
the electron is the reagent, (2) a mild and safe oxidation condition (no heat is needed and the
electric supply can be stopped instantaneously), (3) avoids the use of protective groups and
additional chemical derivatisation steps, (4) phase I metabolism mimicry, (5) the capability
to generate diverse drug metabolites, and (6) single-step metabolite synthesis. Additionally,
in silico predictions to explore the oxidative sites of 2CPTZ and CPZ were examined to
correlate to both the electrochemical and in human metabolite outcomes. The results of this
study suggest that electrosynthesis can be a promising technique for the green synthesis of
drug metabolites in drug discovery and development.
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oxidants and microfluidic electrosynthesis and this work: a green electrosynthesis approach.

2. Result and Discussion
2.1. Structure–Electroactivity Relationship (SeAR) and Cyclic Voltammetry Studies

To explore the structure–electroactive relationships (SeAR) [23] between the PTZ
analogues represented by 2CPTZ and CPZ, we sought to develop a modular synthesis of
R1 and R2 point variables during a related medchem campaign (Scheme 2).

With eight novel analogues, alongside 2CPTZ and CPZ, the cyclic voltammetric
behaviour was determined (see the Supplementary Materials), and a summary of the
effect of the functional group on oxidisability is shown in Scheme 2. Two clear structure–
electroactivity relationship (SeAR) trends emerged. The presence of a chlorine group
generally increased the difficulty with which the PTZ scaffold undergoes oxidation, com-
pared to a thiomethyl group. The ease of oxidisability of the free NH analogue (2CPTZ)
versus all alkylated analogues was explored (e.g., 0.353 V vs. 0.590 V for 2CPTZ vs. CPZ,
respectively). With this tentative SeAR in hand, initial optimisation studies for the elec-
trosynthesis of metabolites commenced with the parent scaffold, 2CPTZ, via enhanced CV
studies [24]. To the best of our knowledge, no other CV study of 2CPTZ has been reported.
The CV studies are shown in Figure 1.
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Here, 2CPTZ had five oxidation events (Figure 1a), with initial oxidation peaks
Epa1 376 mV/Epc1 218 mV and Epa2 756 mV/Epc2 542 mV identified as redox couples
(most likely reversible S-radical cation formation in redox couple 1 and S-oxide radical
cation formation in redox couple 2). Multiple-scan analysis (Figure 1b) revealed the re-
versibility of the electrochemical system being studied, with peak-to-peak separation of
∆Ep1quasi = 158 mV (moderate electron transfer) and ∆Ep2irrev = 214 mV (slow electron
transfer). A scan up to +3.0 V showed three additional irreversible peaks, including Epa3
1676, Epa4 2027, and Epa5 2453 mV, respectively (Figure 1c). Ep2 shifted positively from 756
to 988 to 1176 mV during successive scans, indicating that the electrochemical processes
occurring at the electrode surface may involve complex redox reactions and new chemical
species. Thus, applying a potential greater than 2.453 V in the electrosynthesis reaction
might ensure efficient oxidation of 2CPTZ.

In contrast to 2CPTZ, CPZ had six oxidation events (Figure 1d). Specifically, the first
oxidation peak corresponded to the moderate electron-transfer-reversible redox species at
an anodic potential of 595 mV (Epa1) and a cathodic potential of 492 mV (Epc1), ∆Ep1quasi:
103 mV. The CV profile of CPZ is in accordance with other reports [25]. This reversible
redox reaction corresponds to the oxidation of CPZ to form radical cation CPZ•+ involving
a one-electron process [26]. Epa2–4 were found to demonstrate slow electron transfer/be
irreversible at 765, 1172, 1355, 1909, and 2113 mV vs. Fc/Fc+, respectively, as shown in
Figure 1e. The irreversible process was confirmed in multiple-scan analysis, indicating that
after the first scan, the reaction generated new chemical species/intermediate species in
Epa2 (Figure 1f). Epa2 shifted to more positive potential from the first swept 1182 mV to the
second swept 1240 mV and to the third swept 1268 mV.
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Figure 1. Cyclic voltammetry behaviour of 2CPTZ and CPZ, GCE (WE), Pt (CE), and Ag/AgCl
(pseudo RE), referenced to Fc/Fc+. Electrolyte: TBAPF6; solvent: MeCN. (a) CV studies of 2CPTZ with
multiple sweeps up to 2.0 V and 3.0 V, with a scan rate of 0.20 Vs−1. (b) Multiple-scan analysis of
2CPTZ (5 mM) sweeping up to 2.0 V. (c) Multiple-scan analysis of 2CPTZ (5 mM) sweeping up to
3.0 V. (d) CV studies of CPZ with multiple sweeps up to 2.0 V and 3.0 V, with a scan rate of 0.20 Vs−1.
(e) Multiple-scan analysis of CPZ (4 mM) sweeping up to 2.0 V. (f) Multiple-scan analysis of CPZ
(5 mM) sweeping up to 3.0 V.

2.2. Influence of Applied Current Variations on the PTZ Metabolites’ Electrosynthesis

Informed by the CV studies, the electrosynthesis reaction was optimised to oxidise
the PTZ by adjusting the desired current and avoiding the over-oxidation process [27].
A constant current of initially 0.5 mA, with 0.5 mA increments to 2 mA, was used for
optimising the 2CPTZ oxidation reaction. The optimisation was concluded when the
current used reached the maximum applied voltage of >+ 5.0 V for 24 h. All reactions
were monitored by using HPLC to reference standards (Figure 2a). The starting current
used for the electrosynthesis of 2CPTZ metabolites was 0.5 mA, with a maximum applied
voltage of 3.2 V for 24 h. However, this was insufficient to oxidise 2CPTZ to generate the
desired metabolite with a low metabolite conversion ratio, as shown in Figure 2b. The
optimum condition was found to be a current of 1.0 mA (3.71 V), resulting in increased
production of metabolite 2CPTZ-SO with a ratio of 1:16:1 for 2CPTZ, 2CPTZ-SO, and
2CPTZ-SO2, respectively (Figure 2c). Unidentifiable metabolites were formed at a constant
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current higher than 1.0 mA (Figure 2d,e). A constant current of 2 mA (4.90 V) resulted in
over-oxidised products.
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Figure 2. HPLC analysis of 2CPTZ metabolites’ electrosynthesis under different constant current
conditions using an ElectraSyn 2.0 at 25 ◦C for 24 h. (a) HPLC of the 2CPTZ and 2CPTZ-SO/SO2,
(b) constant current of 0.5 mA, (c) constant current of 1.0 mA, (d) constant current of 1.5 mA, and
(e) constant current of 2.0 mA.

Informed by the optimisation step of the 2CPTZ metabolite reaction, a constant current
of 1.0 mA was selected as the starting current for the CPZ reaction. Based on the CV profile,
the first oxidation occurred at 595 mV, 0.2 Vs−1, higher than 2CPTZ (376 mV, 0.2 Vs−1). The
optimal condition for CPZ metabolite electrosynthesis was achieved by using a constant
current of 1.0 mA (3.86 V) with the highest percentage conversion of CPZ and selectivity for
the CPZ-SO metabolite, CPZ-SO vs. CPZ-SO2, with a ratio of 11:1, respectively (Figure 3b).
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Higher currents of 1.5–3 mA (Figure 3c–f) led to more unassigned CPZ metabolites, with
no improvement in the ratio of the desired metabolites, CPZ-SO and CPZ-SO2.
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Figure 3. HPLC analysis of the CPZ metabolites’ electrosynthesis under different constant current
conditions using ElectraSyn 2.0 at 25 ◦C for 24 h. (a) HPLC of the CPZ and CPZ-SO/SO2 with solvent
gradient indicated in pink (acetonitrile and 0.05% TFA in water), (b) constant current of 1.0 mA,
(c) constant current of 1.5 mA, (d) constant current of 2.0 mA, (e) constant current of 2.5 mA, and
(f) constant current of 3.0 mA.
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2.3. Metabolite Profiling and Sulfoxidation Mechanism of PTZ Metabolites

It was observed during the 2CPTZ oxidation reaction that the reaction mixture changed
from a clear solution to pink at 0.95 V and dark green at >1.25 V. This was most likely due
to the one-electron oxidation [28]. The one-electron oxidation process led to the formation
of radical cations of PTZs that exhibited a pink colour related to a broad visible spectral
band at a peak of 520 nm [29]. The reaction colour gradually shifted to a dark green colour
as the voltage increased above 1.25 V. At the end of the reaction, an unidentified dark green
precipitate formed, likely polymeric products from m/z evidence (Table 2). It should be
noted that increasing the current above 1 mA led to more unwanted products and increased
precipitation after the electrosynthesis reaction. Conversely, no precipitation was observed
in electrosynthesis of CPZ metabolites, even when using a higher constant current of 3 mA.

Table 2. MS analysis of the precipitation products from the 2CPTZ reaction (n.d. = not determined).

No. HRMS (EI+) HRMS (EI−) Product

1 - 247.99 2CPTZ-SO

2 - 263.98 2CPTZ-SO2

3 271.17 - n.d.

4 282.28 - n.d.

5 465.01 462.99

polymeric products

6 506.53 -

7 697.99 695.98

8 - 731.96

9 928.99 926.97

The first step in purifying the metabolites formed in both reactions involved removing
TBAPF6 from the crude reaction mixture through methanol recrystallisation, as outlined
in Procedure B (Supplementary Materials), yielding a 72% recovery of the supporting
electrolyte. The crystals were confirmed as unchanged and reusable TBAPF6 using 1H-
NMR spectroscopic analysis (Supplementary Materials). Two major metabolites of each
compound (2CPTZ and CPZ, respectively) were successfully isolated in their pure form
after column chromatography, including the sulfoxide metabolite (2CPTZ-SO: 51% isolated
yield, and CPZ-SO: 68% isolated yield) and sulfone metabolite (2CPTZ-SO2: 4% isolated
yield, and CPZ-SO2: n.d.). The 1H NMR spectra of the metabolites are shown in Figure 4.

The presence of both sulfoxide and sulfone groups significantly impacted the chemical
shift of the aromatic protons, resulting in the de-shielding of the protons, as observed in 1H
NMR spectra and the NH proton in 2CPTZ (Figure 4). The thioether in 2CPTZ underwent
oxidation due to significant electron density localised in the sulfur unit [30–35]. As a result,
the S-oxidation of 2CPTZ led to the formation of 2CPTZ-SO (2CPTZ-5-oxide) and 2CPTZ-
SO2 (2CPTZ-5,5-dioxide), respectively. The formation of these two metabolites significantly
altered the electronic properties of PTZs [36,37]. FTIR analysis of 2CPTZ-SO showed a
stretching vibration of the S=O bond in the sulfoxide functional group at 987 cm−1. This is
in accordance with the structural label via dual-frequency, two-dimensional infrared (2DIR)
spectroscopy, where the S=O stretching mode in sulfoxide occurred in the frequency range
of 950–1150 cm−1 [38]. Moreover, the stretching frequency band of the sulfone group of
2CPTZ existed at 1128 cm−1 in a symmetric form (label ~1118 cm−1) [39].
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acted as a hydroxide source with hydrogen evolved at the cathode [41]. The hydroxide 
ions intercepted the S-centred radical cation, and the generated proton was reduced to 
produce hydrogen gas at the cathode. The presence of hydrogen gas can be inferred from 
pressure release upon opening the electrochemical vial cap. Further oxidation of the sul-
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ployed to identify other unpurified metabolites (Table 3). It was identified that one of the 

Figure 4. The stacked 1H-NMR spectra (400 MHz, DMSO-d6) of the PTZs studied and their respective
metabolites synthesised via electrochemical oxidation.

The mechanisms of sulfoxide and sulfone metabolites of PTZs are similar. According
to the CPZ metabolites’ electrosynthesis, the existence of the sulfur atom (sulfide state,
+2 oxidation) was more vulnerable to oxidation rather than the tertiary amine on the alkyl
chain. It can be concluded that all PTZ derivates would undergo oxidation at the sulfide
position. Liu and colleagues demonstrated that PTZ derivatives undergo oxidation at
the sulfur position over the N-alkyl position using conventional chemical oxidants [16].
The proposed oxidation mechanisms of PTZ derivatives to form sulfoxide and sulfone are
shown in Scheme 3.
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Scheme 3. A potential mechanism for sulfoxide and sulfone formation from PTZs under electrochem-
ical conditions in non-anhydrous acetonitrile solvent.

The oxidation process of PTZ occurred at the anode (working electrode), while the
reduction process occurred at the cathode (counter-electrode) to maintain the balance of
the oxidation reaction. One-electron oxidation of PTZ afforded a radical cation in non-
anhydrous acetonitrile. Lee and coworkers presented a labelled control experiment in
which water was the oxygen source in sulfoxide and sulfone formation [40], and water
acted as a hydroxide source with hydrogen evolved at the cathode [41]. The hydroxide ions
intercepted the S-centred radical cation, and the generated proton was reduced to produce
hydrogen gas at the cathode. The presence of hydrogen gas can be inferred from pressure
release upon opening the electrochemical vial cap. Further oxidation of the sulfoxide under
analogous steps afforded the sulfone (Scheme 3). LCMS analysis was employed to identify
other unpurified metabolites (Table 3). It was identified that one of the metabolites of CPZ
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is 2CPTZ-SO via an N-dealkylation reaction and sulfoxidation. A proposed mechanism of
N-dealkylation is shown in Scheme 4.

Table 3. LCMS data of PTZ metabolites.

No. Rt (min) Name MW ES+ MW ES− MW Structure

2CPTZ

1 2.54 Metabolite 1
Unknown - 186.2429 187 n.d.

2 2.69 Metabolite 2
2CPTZ-SO 250.0100 247.9937 249
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Table 3. Cont.

No. Rt (min) Name MW ES+ MW ES− MW Structure

4 2.28 Metabolite 4
Unknown 186.2199 - 185.2126 n.d.

5 2.51 Metabolite 5
Unknown 250.0128 247.9941 249.0015
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Phase I metabolism of drugs usually involves chemical processes, such as hydroxy-
lation, dealkylation, and oxidation to the corresponding N-oxide or sulfoxides [42]. Cy-
tochromes (CYP1A2, CYP2B6, CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5) are the pivotal
isoenzymes involved in this metabolic event of most psychotropic drugs [43]. CYP1A2 and
CYP3A4 are the primary isoforms responsible for catalysing 5-sulfoxidation (32% and 30%,
respectively) [44]. Molecular docking was performed with FlareTM V 8.0.0 from Cresset
using multiple CYP isoenzymes, including 1A2, 3A4, 2B6, 2C9, and 2D6 (Figure 5).

According to the docking results with CYP3A4 (Supplementary Materials), the sulfur
atom of CPZ was observed to engage in a sulfur–ion pair interaction with heme-Fe at
3.0 Å (affinity energy: −7.45 kcal/mol), which would suggest that S-oxidation is a likely
metabolic pathway with PTZs (Figure 6) [23].
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3. Materials and Methods
3.1. Electroanalysis Studies of PTZs

All drugs and chemical reagents were of analytical grade and used as-received, unless
stated otherwise. They were purchased from Sigma-Aldrich®, St. Louis, MO, USA. Elec-
troanalysis studies were performed using an Autolab potentiostat–galvanostat (PGSTAT
100 N, Barendrecht, The Netherlands), and CV staircase settings were controlled by the Au-
tolab Nova 2.0 software. The CV experiments referenced ferrocene (Fc/Fc+) as an internal
standard. An undivided glass cell (electrochemical cell) was equipped with a glassy carbon
electrode (GCE BASI® MF-2012, geometric area 0.071 cm2, 3.0 mm-diameter electrode disk
of GCE material) as the working electrode, and a platinum wire (Sigma Aldrich® 0.5 mm
diameter) was used as a counter-electrode (CE). Ag/AgCl pseudo-reference wire was used
as the reference electrode (RE). To this electrochemical setup, the corresponding samples
were added to be analysed. Scan rates were varied, and the electroanalysis profile selected
in the procedure and configuration was fixed with a 0.00244 V step potential and a start and
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stop potential of 0.0 V using the Autolab Nova 2.0 software. Before each experiment, the
GCE was manually polished with 1.0 micron liquid diamond type K (Kemet, Maidstone,
UK) on a smooth velvet polishing pad. The electrodes were rinsed with double-distilled,
deionised water, followed by suitable solvents used in this study, and allowed to dry prior
to the experiment. All CV data were exported to an Excel file and processed using Microsoft
Excel® version 16.69.1 and Prism 10.

3.2. Electrosynthesis of PTZ-Based Metabolites

All electrosynthesis of drug metabolites was performed using ElectraSyn 2.0 (IKA®)
under a constant current control. An undivided glass cell (electrochemical vial) equipped
with a magnetic stirrer was added to the analyte solution under study. Two glassy carbon
electrodes (GCE; IKA®, dimensions (W × H × D = 8 × 52.5 × 2 mm)), as the working
electrode (WE) and the counter-electrode (CE), were inserted into the conductive solution
at an opposing distance of ~5 mm. Prior to the experiment, the electrodes were rinsed with
double-distilled, deionised water, followed by MeCN, and allowed to air-dry. Solutions of
2-chlorophenothiazine (100 mg, 0.43 mmol) and chlorpromazine (100 mg, 0.31 mmol) were
prepared in an electrochemical vial containing tetrabutylammonium hexafluorophosphate
(TBAPF6; analyte:electrolyte 1:5) as the supporting electrolyte in 12 mL of MeCN. A fixed
current of 1.0 mA was passed through the solution for 24 h until the desired charge
(Q) was transferred (2CPTZ: 2.11 F/mol and CPZ: 2.81 F/mol), with a stirring speed of
500 rpm. The electrolysis products were analysed and monitored using TLC. TBAPF6 was
removed by recrystallisation (procedure B). The crude mixture was then purified through
the flash chromatography Biotage® Isolera™ system and Biotage® Sfär silica high-capacity
duo columns of 20 µm (5, 10, 25, and 50 g) with Samplet® and the indicated solvent
systems, which afforded the corresponding isolated sulfoxide and sulfone metabolites. All
metabolites were characterized using 1H- and 13C-NMR spectra and were recorded on
a Bruker AscendTM 400 spectrometer operating at 400 and 101 MHz, fitted with a 5 mm
“smart” BBFO probe, respectively. Mass spectra were recorded on a Waters Xevo G2-XS
Tof or Synap G2-S mass spectrometer using Zspray and a Bruker microTOF® LCMS using
electrospray ionisation in positive (ESI+) and negative (ESI−) modes. Infrared spectra were
recorded on a Thermo Scientific™ Nicolet™ iS™ 5 FTIR Spectrometer with ZnSe ATR
crystal, reported in % transmittance vs. wavenumber in cm−1.

3.3. Chromatographic Separation and Analysis

Chromatographic separation was carried out using a Waters Acquity SQD2 LC-MS
with UPLC consisting of a quaternary pump, autosampler, column compartment, online
degasser, and diode-array detector. The chromatographical separation was conducted
on an Acquity UPLC BEH C18 column (Waters, Milford, MA, USA; 2.1 × 50 mm, i.d.,
1.7 µm). The mass detection was carried out on a Waters SQD2 electrospray ionisation,
single quadrupole mass spectrometer equipped with positive and negative electrospray
ionisation (ESI) sources. All the operations and the post-data-processing were controlled by
MassLynx 4.1 SCN855 software. High-performance liquid chromatography (HPLC) analy-
sis was performed using the Thermo Scientific™ Vanquish™ Flex System with UV/VIS 4
wavelength setting refractive index detectors, equipped with Ascentis® C18 HPLC Column
RP-Amide, 25 cm × 4.6 mm I.D., 5 µm particles (581325-U). The post-data analysis was pro-
cessed by Chromeleon 7.3.2. At each workday’s end, the column was first double-washed
with acetonitrile (100 v/v) for 30 min and then acetonitrile–water (50:50 v/v) for 60 min.

3.4. Docking Procedures

Molecular docking was performed with FlareTM V 8.0.0 from Cresset. The protein
structures, including CYP1A2 (2HI4), CYP2B6 (4RQL), CYP3A4 (1TQN), CYP2C9 (4NZ2),
and CYP2D6 (5TFT), were obtained from a protein data bank (PDB) and prepared using
the following parameters: calculation method—normal, cap chains—intelligent capping,
remove waters outside active side—yes, active site size—6.00 Å, and copy protein and auto-
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extract ligand (reference)—yes. The ligand was prepared using the following parameters:
pop to 3D and minimize—yes. The docking calculation method was performed using
the following parameters: method—very accurate but slow, number of runs—3, and
maximum poses to output each ligand—100. The protein binding sites were investigated
using the Lead Finder version 2212 build 1, 10 December 2022, in a total of 100 different
conformations. The final poses were selected among the most negative energies and
interactions with heme-Fe.

4. Conclusions

In this study, we comprehensively studied the electrochemical behaviour of a series
of PTZ derivatives. Analysis of the cyclic voltammetry behaviour of PTZ derivatives re-
vealed SeAR based on molecular characteristics and their respective influence on oxidation
potential. Molecular modelling enabled the prediction of the metabolites most likely to
form. Ultimately, an optimised electrochemical reaction platform for the parent scaffold
and exemplar drug molecule enabled a tractable synthesis of the S-oxide and, for the first
time, the S,S-dioxide metabolites.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29133038/s1, General Experimental Methods, General
Procedures, Compound Characterization, NMR and MS data, HPLC data, LCMS data, IR data, HPLC-
LCMS data 2-Chlorophenothiazine Fractions, Cyclic voltammetry data on analogues, Molecular
docking studies, and Biotransformer results.
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