
Citation: Kralev, V.; Kraleva, R.

Combining Genetic Algorithm with

Local Search Method in Solving

Optimization Problems. Electronics

2024, 13, 4126. https://doi.org/

10.3390/electronics13204126

Academic Editors: Marcin Witczak,

Eleuda Nuñez, Marie-Monique

Schaper and Bipin Indurkhya

Received: 4 August 2024

Revised: 28 September 2024

Accepted: 17 October 2024

Published: 20 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Combining Genetic Algorithm with Local Search Method in
Solving Optimization Problems
Velin Kralev and Radoslava Kraleva *

Department of Informatics, Faculty of Mathematics and Natural Sciences, South-West University,
2700 Blagoevgrad, Bulgaria; velin_kralev@swu.bg
* Correspondence: rady_kraleva@swu.bg

Abstract: This research is focused on evolutionary algorithms, with genetic and memetic algorithms
discussed in more detail. A graph theory problem related to finding a minimal Hamiltonian cycle in a
complete undirected graph (Travelling Salesman Problem—TSP) is considered. The implementations
of two approximate algorithms for solving this problem, genetic and memetic, are presented. The
main objective of this study is to determine the influence of the local search method versus the
influence of the genetic crossover operator on the quality of the solutions generated by the memetic
algorithm for the same input data. The results show that when the number of possible Hamiltonian
cycles in a graph is increased, the memetic algorithm finds better solutions. The execution time of
both algorithms is comparable. Also, the number of solutions that mutated during the execution of
the genetic algorithm exceeds 50% of the total number of all solutions generated by the crossover
operator. In the memetic algorithm, the number of solutions that mutate does not exceed 10% of the
total number of all solutions generated by the crossover operator, summed with those of the local
search method.

Keywords: genetic algorithm (GA); memetic algorithm (MA); local search; optimization

1. Introduction

A specific but very efficient subclass of evolutionary algorithms is the class of genetic
algorithms [1]. The interest in these algorithms has grown significantly over the past
few years. They are used to solve specific tasks [2–4], as well as to analyze and study
their behavior. Some of their modifications have been used to solve specific optimization
problems [5–7]. These algorithms can generate solutions that are optimal (or close to
optimal) in an acceptable time [8]. A distinctive characteristic of most heuristic approaches
is that they work well for certain problems but it is difficult to adapt the algorithm to a
new one [9]. With a large amount of input data, using the exact approaches is inapplicable,
due to the large number of possible solutions that should be generated and evaluated. For
the class of NP-hard problems, such as schedule theory and graph theory problems, good
approximate solutions have been found using genetic algorithms [10–12]. These problems
are known to be similar but not identical to others, for which good and efficient algorithms
are currently known. A small change in the problem formulation can lead to a large change
in the performance (in terms of speed) of the best-known algorithm so far [13].

Unlike exact algorithms, genetic algorithms (GAs) find solutions that are some ap-
proximations. This means that these solutions are close to equal to the optimal. These
algorithms process a set of acceptable solutions that are modified according to certain rules,
to generate even better solutions. Each solution is represented numerically and evaluated
by a numerical meter according to a defined optimality criterion. After generating the
solutions in the initial solution set, each solution can be kept unchanged in the next solution
set, combined with another to produce a new one, or they are discarded and not analyzed
further. Some of the solutions can be further modified with a degree of pre-set probability,

Electronics 2024, 13, 4126. https://doi.org/10.3390/electronics13204126 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13204126
https://doi.org/10.3390/electronics13204126
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7780-8281
https://orcid.org/0000-0003-3322-7298
https://doi.org/10.3390/electronics13204126
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13204126?type=check_update&version=1

Electronics 2024, 13, 4126 2 of 14

and these modifications are usually minor [14]. Each iteration of the genetic algorithm gen-
erates a new set of solutions, thus performing the main iterative process of the algorithm.
A special solution evaluation function (fitness function) determines whether a solution
is better or worse. This function “evaluates” each solution by assigning a quantitative
measure of its quality. The solutions are classified (as better or worse) based on the scores
obtained [15–18].

One possible way to improve genetic algorithms, when the solutions in the solution set
are close to the optimal or a large part of them are identical, is to apply local search-based
approaches. These are approaches where a better solution is sought by changing an existing
one. The difference between such approaches and the application of the genetic operator
for mutation is that in mutation, the search principle is guessing, i.e., changing one or more
elements of the solution with the expectation that this will lead to a better solution. Unlike
with local search, with the genetic mutation operator, a change is always made, regardless
of whether it will lead to the construction of a better or a worse solution.

The basic concept of memetic algorithms (MAs) was originally presented in [19]. In
that work, an evolutionary algorithm that uses a method based on local search is considered.
A similar idea, however, was later formulated in [20]. In that work, a comparative analysis
is made between these algorithms, presenting the advantages and disadvantages of both
types. In memetic algorithms, a smaller structure of the entire solution is analyzed and
used, and it is viewed as a unit of information that can reproduce itself. This information is
perceived and used differently from the corresponding elements of a decision. The main
difference is that as this information passes between solutions, each solution adapts it in
the best possible way for the moment. Unlike memetic algorithms, the genetic ones leave
the gene unchanged [21–23].

The most important advantage of using memetic algorithms is that the space of
acceptable solutions is reduced to a smaller set (subspace of solutions), among which
there is a local optimum (minimum or maximum). Executing some genetic operators
can generate a solution that has either a worse or a better score as computed by a fitness
function. When using the local search method, the best possible location of the solution
component will always be identified for the currently considered solution. This guarantees
that a solution will be found that yields the best possible score generated by the local search
method [24,25].

Genetic algorithms are often used to solve many optimization problems from various
fields of science, such as graph theory. It is an intensively researched area of computer science
(or more precisely, an area of discrete mathematics) that has undergone great development
over the past few decades. It has a huge practical application because in many cases, the
analysis and description of many systems can be successfully described with graph-type
structures [26,27]. By adding a local search method to the standard crossover and mutation
operators, the computational complexity of the algorithm is increased, and the execution
time can increase significantly [10]. Given the advantages that memetic algorithms provide,
they will be the subject of further research to determine the influence of the local search
method on the quality of the generated solutions. In general, the computational complexity
for both algorithms is quadratic and depends on the input data size.

A large class of graph theory problems, such as NP-hard problems, can be solved
by some approximate algorithms, such as genetic algorithms [2,28–30]. Finding an exact
solution to these problems (but with a large amount of input data) can be unacceptable
in terms of the computational time required to generate the corresponding solution [31].
The backtracking approach always guarantees that optimal solutions will be found but is
only applicable to problems with a small amount of input data. This approach, although
possible, is practically impractical. For example, for a complete undirected graph with
35 vertices and 35 × (35 − 1)/2 = 595 edges, the number of all Hamiltonian paths is huge:
(35 − 1)!/2 ≈ 1.5 × 1038. Therefore, modifying and improving existing heuristic algorithms
(such as genetics) is expected [32–34]. Through them, it is possible to solve some “difficult”
problems “well”, which would take an unacceptably long time.

Electronics 2024, 13, 4126 3 of 14

Many real-world problems can be modeled using graphs. For the current study, the
problem of finding a minimal Hamiltonian cycle in a complete, weighted, undirected graph
will be used. A characteristic of this problem is that it is a combinatorial optimization
problem and has been very intensively studied in recent years. It is known in the literature
as the Travelling Salesman Problem (TSP), and its variants and detailed description are
presented in [35]. There are several approaches and many algorithms for solving the
TSP [36–38]. Two of them are basic—the exact and approximate methods. Exact algorithms
guarantee optimal solutions but often suffer from high computational time. They are
applicable when the number of vertices in the graph is small [39,40]. On the other hand,
approximate algorithms find a solution that is close to optimal, and the time to do so is
acceptable. Such algorithms are discussed in [17,41–43]. Most of the developed algorithms
for TSP fall precisely into the second category. According to the optimization methods, the
TSP algorithms can be classified into more categories [38].

2. Materials and Methods

A method to transform a genetic algorithm into a memetic algorithm by adding a local
search-based method will be presented in this section. An example of its application will
also be presented, dividing the set of elements of a given solution into several commen-
surable subsets of elements (groups), for example, 3, 4, or 6. This approach applies the
rearranging of the elements in each group so that this element occupies the first position in
a group for a specific modified solution. When this local search method is used, the last
found (and accordingly best) solution cannot be lost, i.e., either some solution improvement
will be achieved, or the previous best solution found will remain unchanged.

An example of finding a minimal Hamiltonian cycle will be presented using this
algorithm. The example graph, shown in Figure 1, is generated randomly. The minimum
Hamiltonian cycle is found by the backtracking method, which is similar to the method
presented in [31].

Figure 1. Complete undirected graph G (|V| = 12, |E| = 66).

Table 1 presents a weight matrix of the graph G (12, 66). The values are the distances
between vertices (in pixels).

Electronics 2024, 13, 4126 4 of 14

Table 1. Weight matrix of graph G (|V| = 12, |E| = 66).

V\V a b c d e f g h i j k l

a 0 112 269 269 300 403 381 391 200 100 212 447
b 112 0 200 158 206 300 269 283 112 112 112 335
c 269 200 0 212 320 361 269 200 269 180 112 304
d 269 158 212 0 112 158 112 158 112 250 112 180
e 300 206 320 112 0 112 158 250 100 316 212 224
f 403 300 361 158 112 0 112 224 206 403 269 150
g 381 269 269 112 158 112 0 112 212 354 200 71
h 391 283 200 158 250 224 112 0 269 335 180 112
i 200 112 269 112 100 206 212 269 0 224 158 283
j 100 112 180 250 316 403 354 335 224 0 158 412
k 212 112 112 112 212 269 200 180 158 158 0 255
l 447 335 304 180 224 150 71 112 283 412 255 0

The algorithm, used to find an exact solution, is based on the backtracking approach
and is optimized by the branch-and-bound method. The minimum Hamiltonian cycle has a
length of 1393 (in pixels) with a total of 18,767,942 solutions generated and 29 improvements
found by the algorithm in the search process after 875 ms (milliseconds). The minimum
Hamiltonian cycle and the corresponding sequence of vertices in the order of their traversal
are shown in Figure 2. The minimal Hamiltonian cycle contains the following vertex
traversal sequence:

(a)–(b)–(i)–(e)–(f)–(g)–(l)–(h)–(d)–(k)–(c)–(j)–(a)
112 + 112 + 100 + 112 + 112 + 71 + 112 + 158 + 112 + 112 + 180 + 100 = 1393

Figure 2. Minimal Hamiltonian cycle in graph G (|V| = 12, |E| = 66).

In the next few paragraphs, the implementation of the memetic algorithm will be
described. The results obtained from its best performance (among ten of its runs) will also
be presented. The values of the control parameters are set as follows: number of iterations:
100; population size: 8.

Step 1. Initially, the proposed algorithm randomly generates 8 solutions, labeled from
S1 to S8. For that purpose, the permutations of the elements, which index the graph’s
vertex, are used. Thus, an initial population R0 is formed. Each solution is evaluated
according to the length of the produced Hamiltonian cycle. Then, the initialization set
R0 contains the following solutions {S1, S2, S3, S4, S5, S6, S7, S8}, and their scores are
as follows:

Electronics 2024, 13, 4126 5 of 14

S1: (e)–(i)–(h)–(f)–(l)–(d)–(a)–(b)–(j)–(k)–(c)–(g)–(e) = 2113
S2: (b)–(a)–(j)–(d)–(f)–(e)–(c)–(g)–(l)–(h)–(i)–(k)–(b) = 2043
S3: (k)–(i)–(e)–(c)–(d)–(a)–(b)–(j)–(l)–(h)–(g)–(f)–(k) = 2300
S4: (d)–(f)–(i)–(a)–(j)–(l)–(b)–(e)–(g)–(h)–(k)–(c)–(d) = 2391
S5: (f)–(e)–(g)–(c)–(k)–(b)–(l)–(h)–(d)–(a)–(j)–(i)–(f) = 2167
S6: (k)–(g)–(l)–(h)–(i)–(a)–(b)–(j)–(c)–(d)–(e)–(f)–(k) = 1961
S7: (k)–(g)–(d)–(f)–(e)–(a)–(j)–(h)–(l)–(c)–(b)–(i)–(k) = 2203
S8: (g)–(f)–(i)–(k)–(d)–(l)–(h)–(e)–(b)–(c)–(a)–(j)–(g) = 2259
Step 2. All solutions are sorted in ascending order, depending on their scores (calcu-

lated earlier). The solution S6 has a score of 1961, which corresponds to the length of the
produced Hamiltonian cycle. The next solution, better than S6, is S2 with a score of 2043.
The rest of the solutions are also arranged in ascending order: S1, S5, S7, S8, S3, and S4.

S6: (k)–(g)–(l)–(h)–(i)–(a)–(b)–(j)–(c)–(d)–(e)–(f)–(k) = 1961
S2: (b)–(a)–(j)–(d)–(f)–(e)–(c)–(g)–(l)–(h)–(i)–(k)–(b) = 2043
S1: (e)–(i)–(h)–(f)–(l)–(d)–(a)–(b)–(j)–(k)–(c)–(g)–(e) = 2113
S5: (f)–(e)–(g)–(c)–(k)–(b)–(l)–(h)–(d)–(a)–(j)–(i)–(f) = 2167
S7: (k)–(g)–(d)–(f)–(e)–(a)–(j)–(h)–(l)–(c)–(b)–(i)–(k) = 2203
S8: (g)–(f)–(i)–(k)–(d)–(l)–(h)–(e)–(b)–(c)–(a)–(j)–(g) = 2259
S3: (k)–(i)–(e)–(c)–(d)–(a)–(b)–(j)–(l)–(h)–(g)–(f)–(k) = 2300
S4: (d)–(f)–(i)–(a)–(j)–(l)–(b)–(e)–(g)–(h)–(k)–(c)–(d) = 2391
Step 3. Half of all solutions are selected in this step. This means the four solutions with

the best scores, i.e., S6, S2, S1, and S5, will be used. The remaining solutions, labeled S7, S8,
S3, and S4, are removed from the population. They will not participate in the formation of
the new population—R1.

S6: (k)–(g)–(l)–(h)–(i)–(a)–(b)–(j)–(c)–(d)–(e)–(f)–(k) = 1961
S2: (b)–(a)–(j)–(d)–(f)–(e)–(c)–(g)–(l)–(h)–(i)–(k)–(b) = 2043
S1: (e)–(i)–(h)–(f)–(l)–(d)–(a)–(b)–(j)–(k)–(c)–(g)–(e) = 2113
S5: (f)–(e)–(g)–(c)–(k)–(b)–(l)–(h)–(d)–(a)–(j)–(i)–(f) = 2167
Step 4. The selected solutions of Step 3, S6, S2, S1, and S5, are combined in pairs.

Various methods can be used for this purpose. One possible method is based on using
the solutions’ results in descending order and every two consecutive solutions create a
new pair, i.e., S6 with S2 and S1 with S5 are new pairs. Another pairing process is based
on the criterion of the largest difference in solutions evaluations. This means S6 with S5
and S2 with S1 are new pairs. Random pairing is also possible. Our method uses the first
described pairing process, based on using the solutions’ results in descending order. Thus,
it forms a new parent pair P1 = {S6, S1} and P2 = {S2, S5}.

P1 = {S6: (k)–(g)–(l)–(h)–(i)–(a)–(b)–(j)–(c)–(d)–(e)–(f)–(k) = 1961
S1: (e)–(i)–(h)–(f)–(l)–(d)–(a)–(b)–(j)–(k)–(c)–(g)–(e) = 2113}
P2 = {S2: (b)–(a)–(j)–(d)–(f)–(e)–(c)–(g)–(l)–(h)–(i)–(k)–(b) = 2043
S5: (f)–(e)–(g)–(c)–(k)–(b)–(l)–(h)–(d)–(a)–(j)–(i)–(f) = 2167}
The ordering of the elements in the formed sets P1 = {S6, S1} and P2 = {S2, S5} is

relevant to the crossover operator.
Step 5. The combined pairs of solutions (2 in total, P1 and P2) are new parents. After

applying the genetic crossover operator, two new solutions are generated from each pair of
parents. These descendants are denoted by C1 and C2 (generated by P1), and C3 and C4
(generated by P2). The total number of these solutions should match the total number of
removed solutions in Step 3 (i.e., 4 in number).

The crossover operator uses a single crossover point. With it, the two parent solutions
are divided in the same position into two halves. In this case, these are the elements S6.1,
S6.2, S1.1, and S1.2 without the last vertices of each solution.

S6.1: (k)–(g)–(l)–(h)–(i)–(a)
S6.2: (b)–(j)–(c)–(d)–(e)–(f)
S1.1: (e)–(i)–(h)–(f)–(l)–(d)
S1.2: (a)–(b)–(j)–(k)–(c)–(g)

Electronics 2024, 13, 4126 6 of 14

The new solutions are formed by combining a part of one parent with a part of the
other parent. For instance, descendant C1 is generated by combining S6.1 and S1.2, while
descendant C2 results from the union of S1.1 and S6.2.

C1: (k)–(g)–(l)–(h)–(i)–(a)–(a)–(b)–(j)–(k)–(c)–(g)
C2: (e)–(i)–(h)–(f)–(l)–(d)–(b)–(j)–(c)–(d)–(e)–(f)
The used approach has undesirable effects on some specific problems. This effect is

expressed by the new solutions generated with duplicate elements or completely missing
possible solutions. Such decisions are considered invalid and subsequently not used.

In the presented example, solution C1 has three duplicated elements, (a), (g), and
(k). The elements (d), (e), and (f) are missing. In solution C2, the duplicate and missing
elements are symmetrically swapped, i.e., the situation is just opposite.

To solve the described problem, different approaches to the crossover operator have
been proposed [9]. A possible solution is that the first halves of the descendants are
identical to those taken from their parents (as is our case), and the remaining half is
generated afterward, by filling in missing elements, only in the order of their appearance in
the other parent.

The described approach is applied to convert the unacceptable solutions C1 and C2
into acceptable ones. The items, duplicated in both solutions, are marked as shown below:

C1: (k)–(g)–(l)–(h)–(i)–(a)–(a)–(b)–(j)–(k)–(c)–(g)
C2: (e)–(i)–(h)–(f)–(l)–(d)–(b)–(j)–(c)–(d)–(e)–(f)
Solutions C1 and C2 are transformed into acceptable solutions by swapping duplicate

elements (from their second halves) in the order they appear. Specifically, in C1, element (a)
is exchanged with (d) from C2, (k) with (e), and (g) with (f). This process leads to solutions
with acceptable orders of the elements. At last, the first element is added as the last to
“close” the Hamiltonian cycle:

C1: (k)–(g)–(l)–(h)–(i)–(a)–(d)–(b)–(j)–(e)–(c)–(f)–(k)
C2: (e)–(i)–(h)–(f)–(l)–(d)–(b)–(j)–(c)–(a)–(k)–(g)–(e)
The situation for the solutions C3 and C4 is similar. With that action, the creation of

the 4 new solutions (descendants) is completed.
Step 6. Some of the new solutions can be modified by applying the genetic mutation

operator. This operator modifies the solution by altering one or more of its elements.
In the considered example, from all the new solutions—C1, C2, C3, and C4—a solution

C2 is randomly chosen to mutate.
C2: (e)–(i)–(h)–(f)–(l)–(d)–(b)–(j)–(a)–(c)–(k)–(g)–(e)
After this step, the new solutions have a quantitative measure of their quality—the

length of the formed Hamiltonian cycle.
Step 7. At this step of the algorithm, the parents and descendants are merged. The

algorithm transitions to Step 2 and repeats the processes.
Step 2′. All solutions are sorted in ascending order, depending on their score (calculated

earlier). The solution S6 has a score of 1961, which corresponds to the length of the formed
Hamiltonian cycle, given the order for traversing the vertices of the graph. The next higher-
rated solution is solution number C3 with a score of 2007. Next is solution number C2 with
a score of 2032 and so on. The remaining solutions with the numbers S2, S1, S5, C4, and C1
are also arranged.

S6: (k)–(g)–(l)–(h)–(i)–(a)–(b)–(j)–(c)–(d)–(e)–(f)–(k) = 1961
C3: (b)–(a)–(j)–(d)–(f)–(e)–(l)–(h)–(c)–(g)–(k)–(i)–(b) = 2007
C2: (e)–(i)–(h)–(f)–(l)–(d)–(b)–(j)–(a)–(c)–(k)–(g)–(e) = 2032
S2: (b)–(a)–(j)–(d)–(f)–(e)–(c)–(g)–(l)–(h)–(i)–(k)–(b) = 2043
S1: (e)–(i)–(h)–(f)–(l)–(d)–(a)–(b)–(j)–(k)–(c)–(g)–(e) = 2113
S5: (f)–(e)–(g)–(c)–(k)–(b)–(l)–(h)–(d)–(a)–(j)–(i)–(f) = 2167
C4: (f)–(e)–(g)–(c)–(k)–(b)–(d)–(a)–(l)–(h)–(i)–(j)–(f) = 2645
C1: (k)–(g)–(l)–(h)–(i)–(a)–(d)–(b)–(j)–(e)–(c)–(f)–(k) = 2657
Applying crossover and mutation to the four newly generated solutions yields C3 and

C2, which outperform their parent solutions, S1 and S5. These two solutions will replace

Electronics 2024, 13, 4126 7 of 14

the two parent solutions when the algorithm moves to the next iteration cycle (Step 3).
Next, half of all solutions are selected. In our case, these are the first four solutions with the
best results—S6, C3, C2, and S2.

The remaining solutions (S1, S5, C4, and C1) will be removed from the population.
They will not participate in the forming of the new population—R2.

After 100 iteration cycles (reproductions), the best solution found by the genetic
algorithm and presented in Figure 3 has a value of 1639.

Figure 3. The best-found solution by the genetic algorithm after 100 iterations.

(a)–(b)–(i)–(k)–(e)–(d)–(f)–(g)–(l)–(h)–(c)–(j)–(a)
112 + 112 + 158 + 212 + 112 + 158 + 112 + 71 + 112 + 200 + 180 + 100 = 1639
To present the transformation of the genetic algorithm into a memetic one, an example

applying a method based on local search will be given. The local search method will be
applied for solution S6. That means an additional Step 7.1 is introduced. The local search
method was developed by the authors and presented in detail in [9].

We temporarily remove the last element (vertex) from the cycle—(k)—then distribute
the remaining elements into three groups—A, B, and C—with 4 elements each.

S6: A = {(k)–(g)–(l)–(h)}, B = {(i)–(a)–(b)–(j)}, C = {(c)–(d)–(e)–(f)}
All the vertices in the first group are moved so that the vertices (g), (l), and (h) are

each placed in the first position (in the group). The order with the initial vertex (k) does
not need to be checked because solution S6 is identical to this order. The following four (of
which three are new) solutions are formed:

S6.A.1: (k)–(g)–(l)–(h)–(i)–(a)–(b)–(j)–(c)–(d)–(e)–(f)–(k) = 1961
S6.A.2: (g)–(l)–(h)–(k)–(i)–(a)–(b)–(j)–(c)–(d)–(e)–(f)–(g) = 1673
S6.A.3: (l)–(h)–(k)–(g)–(i)–(a)–(b)–(j)–(c)–(d)–(e)–(f)–(l) = 1894
S6.A.4: (h)–(k)–(g)–(l)–(i)–(a)–(b)–(j)–(c)–(d)–(e)–(f)–(h) = 1998
The initial application of the local search method yielded a significant improvement

with solution S6.A.2. Notably, the starting and ending vertices of the vertex traversal
sequence also differed. While the resulting score is still considerably below the optimal
value of 1393, this initial step represents substantial progress.

The elements in the groups (tentatively labeled B and C) are shuffled cyclically without
changing the best arrangement of group A.

We note that if the local search method is applied as described, the last generated best
solution cannot be lost, i.e., either some improvement will be achieved, or the previous best
solution will stay unchanged.

Electronics 2024, 13, 4126 8 of 14

The best solution found after 100 generated reproductions, from the genetic algorithm
without applying the local search method, has a value of 1639. On the other hand, when
the local search method is used with the same values of the control parameters, the best
solution found has a value of 1425 (Figure 4).

Figure 4. The best-found solution by the memetic algorithm after 100 iterations.

(b)—(i)—(d)—(e)—(f)—(g)—(l)—(h)—(c)—(k)—(j)—(a)—(b)
112 + 112 + 112 + 112 + 112 + 71 + 112 + 200 + 112 + 158 + 100 + 112 = 1425
Expanding the population size to 64 while maintaining 100 reproductions enhanced the

performance of both algorithms. Under these conditions, the genetic algorithm produced
a solution with a value of 1518. Conversely, the memetic algorithm achieved the optimal
solution, scoring 1393, a result that matches the performance of the same algorithm using
the backtracking method. When increasing the number of solutions in the population,
the memetic algorithm finds the optimal solution very quickly: in only 47 ms with 4596
solutions generated. In contrast, the exact algorithm, which uses the backtracking method,
found the best solution after 2625 ms, after testing a total of 48,280,595 solutions. The quality
of the solutions generated by the memetic algorithm is a function of the population size.

3. Results

The two approximate algorithms—genetic, using the evolutionary techniques of
crossover and mutation, and memetic, based on the same evolutionary techniques but
supplemented with a local search method—are the object of this paper. This research aims
to conduct a comparative analysis of approximate algorithms, evaluating their performance
on identical input data while generating a comparable number of solutions. Additionally,
the study addresses the impact of local search methods and genetic crossover operators on
the memetic algorithm’s solution quality.

If the number of vertices in each complete undirected graph G is denoted by n, then
the number of edges m in this graph can be calculated using the following formula:

m =
n(n − 1)

2
(1)

All vertices have the same degree (d = n − 1) since each vertex is connected to exactly
n − 1 edges. The total number of Hamiltonian cycles in a complete undirected graph can
be calculated by the following formula:

Hamiltonian cycles =
(n − 1)!

2
(2)

Electronics 2024, 13, 4126 9 of 14

To experiment, 17 complete undirected graphs (G_n_m) were created, G_12_66,
G_13_78, . . ., G_28_378, and the coordinates (in pixels) of all vertices were randomly
generated. Each graph was created by adding one more vertex to the available ones, as
well as adding edges that connected that vertex to the others.

The experiments were performed on a standard computer configuration with the Win
11 Pro 64-bit operating system installed and the following hardware configuration: CPU:
Intel® Core™ i7-4712MQ CPU @ 2.30 GHz 2.30 GHz; RAM: 8.00 GB.

The results obtained from the experiments will be presented in the following para-
graphs. The aim is to investigate the behavior of the approximate algorithms with the same
input data. The main parameters that need to be analyzed are the population size (i.e., the
number of solutions in the set of generated solutions) and the number of reproductions
(i.e., the number of iterations performed by both algorithms—genetic and memetic).

The results of the experiments with the approximate algorithms will be analyzed
in three stages. First, the results obtained after running the genetic algorithm on all test
graphs, from G_12_66 to G_28_378, are analyzed. Second, the results from the execution of
the memetic algorithm on the same graphs are analyzed. Third, a comparative analysis
will be made between the genetic and memetic algorithms by comparing the solutions
generated by the genetic mutation operators, total solutions generated, execution time, best
result obtained, and best run out of total number of runs.

The number of crossover solutions is determined by the number of reproductions and
the population size, while the number of mutated solutions is set as a percentage of the
crossover solutions.

Tables 2 and 3 present the summarized results of executing the genetic and memetic
algorithms.

Table 2. Summary results of the genetic algorithm.

Graph Crossover
Solutions

Mutation
Solutions

Total
Solutions

Time
(ms)

Solutions
Per ms

Mutated
Solutions

(%)

G_12_66 662,640 248,738 911,378 5125 178 37.5%
G_13_78 783,120 352,439 1,135,559 6451 176 45.0%
G_14_91 843,360 488,904 1,332,264 7611 175 58.0%
G_15_105 978,900 644,861 1,623,761 8969 181 65.9%
G_16_120 1,124,480 857,726 1,982,206 10,887 182 76.3%
G_17_136 1,280,100 896,428 2,176,528 12,423 175 70.0%
G_18_153 1,355,400 863,862 2,219,262 11,755 189 63.7%
G_19_171 1,526,080 849,710 2,375,790 12,932 184 55.7%
G_20_190 1,706,800 853,826 2,560,626 14,029 183 50.0%
G_21_210 1,897,560 1,080,615 2,978,175 16,629 179 56.9%
G_22_231 1,987,920 1,244,005 3,231,925 17,316 187 62.6%
G_23_253 2,193,740 1,268,791 3,462,531 19,942 174 57.8%
G_24_276 2,289,120 1,294,092 3,583,212 20,538 174 56.5%
G_25_300 2,635,500 1,815,082 4,450,582 23,664 188 68.9%
G_26_325 2,740,920 1,798,503 4,539,423 24,512 185 65.6%
G_27_351 2,981,880 1,881,312 4,863,192 25,896 188 63.1%
G_28_378 3,232,880 1,900,576 5,133,456 28,049 183 58.8%

The obtained values show that for all test graphs, the number of solutions generated
within 1 ms is comparable with the deviation from the column average (equal to 181 ms).
Two conclusions can be made from the obtained values. First, in 14 out of a total of 17 cases
of test graphs, the number of solutions that have mutated exceeds 50% of the number of
solutions generated by the crossover operator. This means that the populations contain
many identical solutions, which leads to a faster onset of the convergence level. Second,
the results show that the deviation from the column average (equal to 59.6%) is in the
range [–16.68%, 22.06%], which indicates the stochastic nature of the crossover operator in
genetic algorithms.

Electronics 2024, 13, 4126 10 of 14

Table 3. Summary results of the memetic algorithm.

Graph Crossover and Local Search
Solutions

Mutation
Solutions

Total
Solutions

Time
(ms)

Solutions Per
ms

Mutated
Solutions (%)

G_12_66 662,640 82,167 744,807 5470 136 12.4%
G_13_78 783,120 117,468 900,588 6496 139 15.0%
G_14_91 843,360 102,889 946,249 6986 135 12.2%

G_15_105 978,900 74,396 1,053,296 8366 126 7.6%
G_16_120 1,124,480 94,456 1,218,936 9247 132 8.4%
G_17_136 1,280,100 120,329 1,400,429 11,327 124 9.4%
G_18_153 1,355,400 121,986 1,477,386 12,159 122 9.0%
G_19_171 1,526,080 131,242 1,657,322 13,539 122 8.6%
G_20_190 1,706,800 150,198 1,856,998 14,472 128 8.8%
G_21_210 1,897,560 170,780 2,068,340 16,665 124 9.0%
G_22_231 1,987,920 182,888 2,170,808 16,475 132 9.2%
G_23_253 2,193,740 206,211 2,399,951 19,954 120 9.4%
G_24_276 2,289,120 226,502 2,515,622 20,938 120 9.9%
G_25_300 2,635,500 253,008 2,888,508 23,041 125 9.6%
G_26_325 2,740,920 268,610 3,009,530 24,056 125 9.8%
G_27_351 2,981,880 250,477 3,232,357 24,758 131 8.4%
G_28_378 3,232,880 278,027 3,510,907 28,734 122 8.6%

The obtained values show that for all test graphs, the number of solutions generated
within 1 ms is comparable with the deviation from the column average (equal to 127 ms).
From the obtained values, it can be seen that only in 3 cases (out of a total of 17), the number
of solutions that have mutated exceeds 10% of the number of solutions generated by the
crossover operator, summed with those of the local search method. This means that the
populations of the memetic algorithm contain many unique solutions.

Comparative analyses between the generated solutions, the execution time, and the
number of starts of the genetic and memetic algorithms are presented in Table 4.

Table 4. Summary results between genetic and memetic algorithms.

Graph GA Result
(px)

GA Time
(ms) GA Runs MA Result

(px)
MA Time

(ms) MA Runs

G_12_66 1320 5125 4/4 1320 5470 1/1
G_13_78 1388 6451 3/3 1388 6496 1/1
G_14_91 1461 7611 7/7 1461 6986 1/1
G_15_105 1512 8969 1/1 1512 8366 1/1
G_16_120 1568 10,887 5/5 1568 9247 1/1
G_17_136 1681 12,423 8/8 1681 11,327 4/4
G_18_153 1718 11,755 2/2 1718 12,159 7/7
G_19_171 1963 12,932 6/10 1941 13,539 3/10
G_20_190 2042 14,029 4/4 2042 14,472 8/8
G_21_210 2115 16,629 5/10 2085 16,665 6/10
G_22_231 2170 17,316 7/10 2158 16,475 4/10
G_23_253 2353 19,942 3/10 2296 19,954 2/10
G_24_276 2434 20,538 4/10 2357 20,938 3/10
G_25_300 2359 23,664 2/10 2359 23,041 8/10
G_26_325 2490 24,512 8/10 2452 24,056 5/10
G_27_351 2549 25,896 3/10 2519 24,758 7/10
G_28_378 2590 28,049 7/10 2543 28,734 4/10

Table 4 shows that the genetic algorithm found 9 out of a total of 11 known optimal
solutions (for the first columns up to G_21_210 inclusive). In only two cases (in graphs
G_19_171 and G_21_210), the genetic algorithm failed to find the optimal solutions but
found solutions that were close to them (in value). In contrast to the genetic algorithm,
the memetic algorithm found all 11 known optimal solutions, and in 5 out of 11 cases, this

Electronics 2024, 13, 4126 11 of 14

happened on its first run. For the remaining seven graphs (from G_22_231 to G_28_378),
the memetic algorithm found solutions that in six out of seven cases were better than those
found by the genetic algorithm, and in only one of the cases—for graph G_25_300—the
found solution and from both algorithms is the same (i.e., the Hamiltonian cycle found for
the graph G_25_300 from both algorithms is the same).

From these results, it can be concluded that when the number of possible Hamiltonian
cycles increases, it becomes increasingly more “difficult” for the genetic algorithm to find
the optimal solutions. This indicates that the population size (which is many times larger
than that of the memetic algorithm) must be increased or the reproductions generated
(which are also many times larger than those performed by the memetic algorithm) must
be increased.

The execution time of both algorithms is comparable, although the total number of
solutions generated by the genetic algorithm is more than that generated by the memetic
algorithm. This trend is presented in Figure 5.

0

5

10

15

20

25

30

35

G
_

1
2

_6
6

G
_

1
3

_7
8

G
_

1
4

_9
1

G
_

1
5

_1
0

5

G
_

1
6

_1
2

0

G
_

1
7

_1
3

6

G
_

1
8

_1
5

3

G
_

1
9

_1
7

1

G
_2

0
_1

9
0

G
_

2
1

_2
1

0

G
_

2
2

_2
3

1

G
_

2
3

_2
5

3

G
_

2
4

_2
7

6

G
_

2
5

_3
0

0

G
_

2
6

_3
2

5

G
_

2
7

_3
5

1

G
_

2
8

_3
7

8

Th
o

u
sa

n
d

s

GA time
(in ms)

MA time
(in ms)

Figure 5. Comparison between execution times for genetic algorithm and memetic algorithm.

Figure 5 shows that the time for executing the memetic and the genetic algorithms
when searching for solutions of the same graphs is comparable, even if the genetic algorithm
generates more solutions than the memetic one. Since the number of solutions generated by
the genetic algorithm in 1 millisecond is greater than the number of solutions generated by
the memetic algorithm for the same time (between 35% and 42%), the memetic algorithm is
more efficient.

The results show that the memetic algorithm always finds a better or equal solution to
what the genetic algorithm found. This trend can be seen in Figure 6.

Although the differences in the values of the solutions found by the two algorithms
are not large (except for graph G_25_300, where they are equal), finding better solutions for
the concrete NP-hard problem is a significant success. To solve this problem, the memetic
algorithm can be used because it finds optimal or near-optimal solutions. Moreover, this
algorithm finds solutions in an acceptable time.

Electronics 2024, 13, 4126 12 of 14

0

10

20

30

40

50

60

70

80

G
_

1
2

_6
6

G
_

1
3

_7
8

G
_

1
4

_9
1

G
_1

5
_1

0
5

G
_

1
6

_1
2

0

G
_

1
7

_1
3

6

G
_

1
8

_1
5

3

G
_

1
9

_1
7

1

G
_

2
0

_1
9

0

G
_

2
1

_2
1

0

G
_

2
2

_2
3

1

G
_

2
3

_2
5

3

G
_

2
4

_2
7

6

G
_

2
5

_3
0

0

G
_

2
6

_3
2

5

G
_

2
7

_3
5

1

G
_

2
8

_3
7

8

GA result - MA result (in px)

Figure 6. Differences between results found by the genetic algorithm and memetic algorithm.

4. Conclusions

When the number of Hamiltonian cycles increases, the memetic algorithm can find
the optimal solutions (or close to them) faster than the genetic algorithm. Although the
population using the genetic algorithm is larger than that of the memetic algorithm, the
execution time of both algorithms is comparable. In most of the examined graphs, the
number of solutions that mutated when executing the genetic algorithm exceeded 50%
of all solutions generated by the crossover operator. This means that most populations
contain many identical solutions, which leads to a faster convergence. Unlike the genetic
algorithm, the number of mutated solutions by the memetic algorithm rarely exceeds 10%
of the number of all solutions generated by the crossover operator, summed with those
from the local search method. This means that the populations generated by the memetic
algorithm contain many unique solutions.

The results show that combining evolutionary algorithms with local search techniques
provides a powerful tool for solving combinatorial optimization problems. Exact algorithms
based on various techniques, such as backtracking and its optimized variants, such as the
“branch and bound” method, make it possible to find optimal solutions (in an acceptable
time), but only to problems with a small input data size. In contrast, approximate algorithms
often have linear complexity or complexity described by a low-degree polynomial. When
analyzing the computational complexity of these algorithms (genetic and/or memetic), it
is necessary to consider the influence of the “population size” and “number of generated
reproductions” parameters. Fine-tuning them can significantly affect the overall execution
time of both algorithms. Therefore, finding methods to determine the optimal values of
the control parameters (in terms of total execution time) is essential. The guidelines for
research development include a comparative analysis of the proposed method with other
known methods and common datasets (benchmarks).

Author Contributions: Conceptualization, R.K. and V.K.; methodology, R.K.; software, R.K. and V.K.;
formal analysis, R.K.; investigation, R.K.; data curation, V.K.; writing—original draft preparation, R.K.
and V.K.; writing—review and editing, R.K.; visualization, V.K. All authors have read and agreed to
the published version of the manuscript.

Funding: The APC was funded by MDPI under grant a5b667bc1618fac8 to R.K.

Data Availability Statement: The data involved in the paper are available upon reasonable request
to the corresponding author.

Acknowledgments: The authors would like to thank the reviewers for their constructive comments.

Electronics 2024, 13, 4126 13 of 14

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Senbagamalar, L.; Logeswari, S. Genetic Clustering Algorithm-Based Feature Selection and Divergent Random Forest for

Multiclass Cancer Classification Using Gene Expression Data. Int. J. Comput. Intell. Syst. 2024, 17, 23. [CrossRef]
2. Wang, Y. A genetic algorithm with the mixed heuristics for traveling salesman problem. Int. J. Comput. Intell. Appl. 2015,

14, 1550003. [CrossRef]
3. Pyrih, Y.; Klymash, M.; Kaidan, M.; Strykhalvuk, B. Investigating the Efficiency of Tournament Selection Operator in Genetic

Algorithm for Solving TSP. In Proceedings of the 5th IEEE International Conference on Advanced Information and Communication
Technologies, AICT 2023, Lviv, Ukraine, 21–25 November 2023; pp. 170–173. [CrossRef]

4. Yamada, M. 1/f Noise in the Simple Genetic Algorithm Applied to a Traveling Salesman Problem. Fluct. Noise Lett. 2017,
16, 1750026. [CrossRef]

5. Meneses, S.; Cueva, R.; Tupia, M.; Guanira, M. A genetic algorithm to solve 3D traveling salesman problem with initial population
based on a GRASP algorithm. J. Comput. Methods Sci. Eng. 2017, 17, S1–S10. [CrossRef]

6. Zhang, T.; Zhou, Y.; Zhou, G.; Deng, W.; Luo, Q. Discrete Mayfly Algorithm for spherical asymmetric traveling salesman problem.
Expert Syst. Appl. 2023, 221, 119765. [CrossRef]

7. Maity, S.; Roy, A.; Maiti, M. A Modified Genetic Algorithm for solving uncertain Constrained Solid Travelling Salesman Problems.
Comput. Ind. Eng. 2015, 83, 273–296. [CrossRef]

8. Victer Paul, P.; Moganarangan, N.; Kumar, S.S.; Raju, R.; Vengattaraman, T.; Dhavachelvan, P. Performance analyses over
population seeding techniques of the permutation-coded genetic algorithm: An empirical study based on traveling salesman
problems. Appl. Soft Comput. J. 2015, 32, 383–402. [CrossRef]

9. Kralev, V.; Kraleva, R.; Kumar, S. A modified event grouping based algorithm for the university course timetabling problem. Int.
J. Adv. Sci. Eng. Inf. Technol. 2019, 9, 229–235. [CrossRef]

10. Romaguera, D.; Plender-Nabas, J.; Matias, J.; Austero, L. Development of a Web-based Course Timetabling System based on an
Enhanced Genetic Algorithm. Procedia Comput. Sci. 2024, 234, 1714–1721. [CrossRef]

11. Plante, J.-F.; Larocque, M.; Adès, M. Objective model selection with parallel genetic algorithms using an eradication strategy. Can.
J. Stat. 2024, 52, 636–654. [CrossRef]

12. Wang, Z. Optimal Scheduling of Flow Shop Based on Genetic Algorithm. J. Adv. Manuf. Syst. 2022, 21, 111–123. [CrossRef]
13. Alekseev, V.E.; Boliac, R.; Korobitsyn, D.V.; Lozin, V.V. NP-hard graph problems and boundary classes of graphs. Theor. Comput.

Sci. 2007, 389, 219–236. [CrossRef]
14. Ilin, V.; Simić, D.; Simić, S.D.; Simić, S.; Saulić, N.; Calvo-Rolle, J.L. A hybrid genetic algorithm, list-based simulated annealing

algorithm, and different heuristic algorithms for travelling salesman problem. Log. J. IGPL 2023, 31, 602–617. [CrossRef]
15. Yuan, S.; Skinner, B.; Huang, S.; Liu, D. A new crossover approach for solving the multiple travelling salesmen problem using

genetic algorithms. Eur. J. Oper. Res. 2013, 228, 72–82. [CrossRef]
16. Tsai, C.W.; Tseng, S.P.; Chiang, M.C.; Yang, C.S.; Hong, T.P. A high-performance genetic algorithm: Using traveling salesman

problem as a case. Sci. World J. 2014, 2014, 178621. [CrossRef]
17. Alkafaween, E.; Hassanat, A.; Essa, E.; Elmougy, S. An Efficiency Boost for Genetic Algorithms: Initializing the GA with the

Iterative Approximate Method for Optimizing the Traveling Salesman Problem—Experimental Insights. Appl. Sci. 2024, 14, 3151.
[CrossRef]

18. Skorpil, V.; Oujezsky, V. Parallel Genetic Algorithms’ Implementation Using a Scalable Concurrent Operation in Python. Sensors
2022, 22, 2389. [CrossRef]

19. Moscato, P.; Norman, M.G. A memetic approach for the traveling salesman problem implementation of a computational ecology
for combinatorial optimization on message-passing systems. In Book Parallel Computing and Transputer Applications; CIMNE:
Barcelona, Spain, 1992; pp. 177–186.

20. Radcliffe, N.J.; Surry, P.D. Formal memetic algorithms. In AISB Workshop on Evolutionary Computing; Springer: Berlin/Heidelberg,
Germany, 1994; Volume 11, pp. 1–16.

21. Badillo, A.R.; Cotta, C.; Fernández-Leiva, A.J. Towards user-centric memetic algorithms: Experiences with the TSP. Lect. Notes
Comput. Sci. (Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 2011, 6692, 284–291. [CrossRef]

22. Luo, Z.; Zou, G.; Li, Z.; Chen, S.; Xu, J. A memetic ready-mixed concrete scheduling method based on bidirectional collaborative
optimisation for highway construction. Int. J. Embed. Syst. 2023, 15, 505–515. [CrossRef]

23. Wang, Y.; Chen, Y.; Lin, Y. Memetic algorithm based on sequential variable neighborhood descent for the minmax multiple
traveling salesman problem. Comput. Ind. Eng. 2017, 106, 105–122. [CrossRef]

24. Samanlioglu, F.; Ferrell, W.G.; Kurz, M.E. An interactive memetic algorithm for production and manufacturing problems modelled
as a multi-objective travelling salesman problem. Int. J. Prod. Res. 2012, 50, 5671–5682. [CrossRef]

25. Candeias, J.; de Araújo, D.R.B.; Miranda, P.; Bastos-Filho, C.J.A. Memetic evolutionary algorithms to design optical networks
with a local search that improves diversity. Expert Syst. Appl. 2023, 232, 120805. [CrossRef]

26. Koh, K.M.; Dong, F.; Tay, E.G. Introduction to Graph Theory: With Solutions to Selected Problems; World Scientific Publishing:
Singapore, 2023; pp. 1–294. [CrossRef]

https://doi.org/10.1007/s44196-024-00416-9
https://doi.org/10.1142/S1469026815500030
https://doi.org/10.1109/AICT61584.2023.10452423
https://doi.org/10.1142/S0219477517500262
https://doi.org/10.3233/JCM-160675
https://doi.org/10.1016/j.eswa.2023.119765
https://doi.org/10.1016/j.cie.2015.02.023
https://doi.org/10.1016/j.asoc.2015.03.038
https://doi.org/10.18517/ijaseit.9.1.6488
https://doi.org/10.1016/j.procs.2024.03.177
https://doi.org/10.1002/cjs.11775
https://doi.org/10.1142/S021968672150044X
https://doi.org/10.1016/j.tcs.2007.09.013
https://doi.org/10.1093/jigpal/jzac028
https://doi.org/10.1016/j.ejor.2013.01.043
https://doi.org/10.1155/2014/178621
https://doi.org/10.3390/app14083151
https://doi.org/10.3390/s22062389
https://doi.org/10.1007/978-3-642-21498-1_36
https://doi.org/10.1504/IJES.2022.129811
https://doi.org/10.1016/j.cie.2016.12.017
https://doi.org/10.1080/00207543.2011.593578
https://doi.org/10.1016/j.eswa.2023.120805
https://doi.org/10.1142/13637

Electronics 2024, 13, 4126 14 of 14

27. Bacheti, G.G.; Camargo, R.S.; Amorim, T.S.; Yahyaoui, I.; Encarnação, L.F. Model-Based Predictive Control with Graph Theory
Approach Applied to Multilevel Back-to-Back Cascaded H-Bridge Converters. Electronics 2022, 11, 1711. [CrossRef]

28. El-Samak, A.F.; Ashour, W. Optimization of traveling salesman problem using affinity propagation clustering and genetic
algorithm. J. Artif. Intell. Soft Comput. Res. 2015, 5, 239–245. [CrossRef]

29. Maskooki, A.; Kallio, M. A bi-criteria moving-target travelling salesman problem under uncertainty. Eur. J. Oper. Res. 2023, 309,
271–285. [CrossRef]

30. Kuchaki Rafsanjani, M.; Eskandari, S.; Borumand Saeid, A. A similarity-based mechanism to control genetic algorithm and local
search hybridization to solve traveling salesman problem. Neural Comput. Appl. 2015, 26, 213–222. [CrossRef]

31. Kralev, V. An Analysis of a Recursive and an Iterative Algorithm for Generating Permutations Modified for Travelling Salesman
Problem. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 1685–1692. [CrossRef]

32. El Idrissi, A.L.; Tajani, C. Genetic algorithm with immigration strategy to solve the fixed charge transportation problem. Indones.
J. Electr. Eng. Comput. Sci. 2023, 31, 313–320. [CrossRef]

33. He, M.; Wu, Q.; Benlic, U.; Lu, Y.; Chen, Y. An effective multi-level memetic search with neighborhood reduction for the clustered
team orienteering problem. Eur. J. Oper. Res. 2024, 318, 778–801. [CrossRef]

34. Dang, X.; Gong, D.; Yao, X.; Tian, T.; Liu, H. Enhancement of Mutation Testing via Fuzzy Clustering and Multi-Population Genetic
Algorithm. IEEE Trans. Softw. Eng. 2022, 48, 2141–2156. [CrossRef]

35. Applegate, D.L.; Bixby, R.E.; Chvátal, V.; Cook, W.J. The Traveling Salesman Problem: A Computational Study; Princeton University
Press: Princeton, NJ, USA, 2011; pp. 1–593.

36. Zhukova, G.N.; Ul’yanov, M.V.; Fomichev, M.I. A Hybrid Exact Algorithm for the Asymmetric Traveling Salesman Problem:
Construction and a Statistical Study of Computational Efficiency. Autom. Remote Control 2019, 80, 2054–2067. [CrossRef]

37. de Oliveira, S.M.; Bezerra, L.C.T.; Stützle, T.; Dorigo, M.; Wanner, E.F.; de Souza, S.R. A computational study on ant colony
optimization for the traveling salesman problem with dynamic demands. Comput. Oper. Res. 2021, 135, 105359. [CrossRef]

38. Pop, P.C.; Cosma, O.; Sabo, C.; Sitar, C.P. A comprehensive survey on the generalized traveling salesman problem. Eur. J. Oper.
Res. 2024, 314, 819–835. [CrossRef]

39. Battarra, M.; Pessoa, A.A.; Subramanian, A.; Uchoa, E. Exact algorithms for the traveling salesman problem with draft limits. Eur.
J. Oper. Res. 2014, 235, 115–128. [CrossRef]

40. Kinable, J.; Smeulders, B.; Delcour, E.; Spieksma, F.C.R. Exact algorithms for the Equitable Traveling Salesman Problem. Eur. J.
Oper. Res. 2017, 261, 475–485. [CrossRef]

41. Hussain, A.; Muhammad, Y.S.; Nauman Sajid, M.; Hussain, I.; Mohamd Shoukry, A.; Gani, S. Genetic Algorithm for Traveling
Salesman Problem with Modified Cycle Crossover Operator. Comput. Intell. Neurosci. 2017, 2017, 7430125. [CrossRef]

42. Wollmann, J.; Muschalski, L.; Wang, Z.; Zichner, M.; Winkler, A.; Modler, N. Application of genetic algorithm for the synthesis of
path-generating compliant mechanisms. Smart Mater. Struct. 2024, 33, 015023. [CrossRef]

43. Wang, Z.; Shen, Y.; Li, S.; Wang, S. A fine-grained fast parallel genetic algorithm based on a ternary optical computer for solving
traveling salesman problem. J. Supercomput. 2023, 79, 4760–4790. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/electronics11111711
https://doi.org/10.1515/jaiscr-2015-0032
https://doi.org/10.1016/j.ejor.2023.01.009
https://doi.org/10.1007/s00521-014-1717-7
https://doi.org/10.18517/ijaseit.7.5.3173
https://doi.org/10.11591/ijeecs.v31.i1.pp313-320
https://doi.org/10.1016/j.ejor.2024.06.015
https://doi.org/10.1109/TSE.2021.3052987
https://doi.org/10.1134/S0005117919110092
https://doi.org/10.1016/j.cor.2021.105359
https://doi.org/10.1016/j.ejor.2023.07.022
https://doi.org/10.1016/j.ejor.2013.10.042
https://doi.org/10.1016/j.ejor.2017.02.017
https://doi.org/10.1155/2017/7430125
https://doi.org/10.1088/1361-665X/ad0b93
https://doi.org/10.1007/s11227-022-04813-9

	Introduction
	Materials and Methods
	Results
	Conclusions
	References

