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Abstract

This paper investigates models of working memory in which memory traces evolve accord-

ing to stochastic attractor dynamics. These models have previously been shown to account

for response-biases that are manifest across multiple trials of a visual working memory task.

Here we adapt this approach by making the stable fixed points correspond to the multiple

items to be remembered within a single-trial, in accordance with standard dynamical per-

spectives of memory, and find evidence that this multi-item model can provide a better

account of behavioural data from continuous-report tasks. Additionally, the multi-item model

proposes a simple mechanism by which swap-errors arise: memory traces diffuse away

from their initial state and are captured by the attractors of other items. Swap-error curves

reveal the evolution of this process as a continuous function of time throughout the mainte-

nance interval and can be inferred from experimental data. Consistent with previous findings,

we find that empirical memory performance is not well characterised by a purely-diffusive

process but rather by a stochastic process that also embodies error-correcting dynamics.

1 Introduction

Working Memory (WM) [1] and short-term memory [2] refer to our ability to maintain infor-

mation over time in the absence of direct sensory input. This allows us to decouple behaviour

from our immediate world and underlies a host of functions from attention, to executive func-

tion, planning and problem solving. Moreover, deficits in working memory are implicated in a

host of neurological disorders including Parkinson’s and Alzheimer’s [3].

A well known feature of working memory is that it has a limited capacity, limited perhaps

in the discrete number of items that can be remembered [4] or the precision with which items

can be recalled [5, 6]. Errors in short-term memory are thought to be due, in part, to noise in

the underlying neuronal representations from the individual failures of synapses or the sto-

chastic spiking of single neurons. This noise can cause memory representations to diffuse

away from their initial states leading to memory errors [7, 8].

Theoretical and empirical work has shown that working memories can be stored in contin-

uous “ring” attractors and that this form of storage tends to accumulate errors over time in a

manner commensurate with a stochastic diffusion process [9]. A further body of work, how-

ever, shows that errors accumulated by diffusion processes can be corrected through the use of
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“discrete” attractors, wherein memories are stored as stable fixed points of a dynamical system

[10, 11]. Here, the fate of a memory is governed by the balance of two forces, a stochastic force

that causes memory traces to randomly diffuse over time and a deterministic force that directs

traces toward attractor states. In this view, it is this second deterministic force that provides

memory systems with their robustness and error-correcting abilities.

In recent work Panichello et al. [12] developed a model of stochastic attractor dynamics

and fitted it to data from a continuous-report visual working memory task. A key feature of

their work is that they were able to identify stable fixed points that corresponded to biases in

participant’s responses across a set of trials. For example, instead of reporting the precise vari-

ant of blue, participants tended to report an “archetypal” blue and this tendency increased

with maintenance interval length, reflecting convergence towards a stable state. We refer to

their approach as the “Response-Bias” model.

Generically, the bias-variance decomposition [13] shows that the errors of any system can

be decomposed into those caused by “bias” and those caused by “variance”. One way of

decreasing the overall error is to introduce a small (correct) bias which will have the effect of

reducing the variance. The Response Bias model is motivated by this perspective, and the

empirical finding that participant responses cluster around archetypal values over trials [12,

14, 15].

In this paper we use a similar mathematical formalism [12] but propose assigning stable

fixed points to the multiple items that are to be remembered on each trial. This is consistent

with the original construct of discrete attractor dynamics [16, 17] and circuit-level implemen-

tations using, for example, Dynamic Field Theory [18]. We show that this “Multi-Item” model

can provide a better account of data from continuous-report visual working memory tasks.

1.1 Continuous-report tasks

In the continuous colour-report task illustrated in Fig 1, participants are shown a stimulus

array in an encoding phase, the array disappears during a maintenance interval, and in a

Fig 1. Continuous colour-report task. In a continuous colour-report task, participants are shown a stimulus array in

an encoding phase, the array disappears during the maintenance period leaving for example only a fixation cross, and

participants are cued with a probe in the decision phase. Here participants are probed with a location cue (solid

outlined square) and asked to rotate a colour wheel to match the colour of the item at that location in the stimulus

array. The timings are typically 0.1 to 2s for the encoding phase, 0.5 to 10s for the maintenance interval and 0.5 up to 2s

for the decision phase. Other continuous report tasks vary in their combination of cue and recall attributes (e.g.

location, colour, orientation).

https://doi.org/10.1371/journal.pone.0301039.g001
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decision phase participants are cued with a location and asked to rotate a colour wheel to

match the colour of the item at that location in the stimulus array. Similar experimental para-

digms vary as to whether the cued or reported attributes are colours, orientations or locations

[8, 19, 20]. The use of continuous reports, in which the reported variable is continuous rather

discrete, has changed our understanding of the nature of working memory. These tasks have

led to the proposal that, rather than working memory having a fixed capacity limit on the

number of items that can be stored (e.g. between 3 and 7 items), the more fundamental limit is

on the precision with which items can be recalled [6]. Precision has been found to decrease

with load (number of items) [5]. Precision has also been found to decrease with length of the

maintenance interval. For example, Rademaker et al. (2018) [21] tested memory for single

grating orientation, patch color, and face identity items (generated via a continous circular

latent space) across delays of 1, 3, 6 or 12s. Across all conditions, participants exhibited a clear

decline in the precision of their working memories. The loss of precision over the maintenance

interval is a finding that is consistent with gradual accrual of noise. Generally, the loss of preci-

sion has a stronger dependence on load than delay length and studies have found interactions

such that the effect of delay length is magnified at higher loads [12, 19].

1.2 Models of working memory

Here we very briefly review other mathematical models of working memory. As this is a large

research area we refer the reader to more substantial reviews [6, 11, 22] and here view the field

as comprising either (i) “cognitive models” or (ii) “neuronal models”.

In the category of cognitive models Zhang and Luck [4] proposed a mixture model that

accounts for two types of trial (i) guesses and (ii) responses based on the target item, where

responses are modelled as circular Gaussians (Von-Mises densities) with an estimable preci-

sion parameter. This was then extended by Bays et al [5] to additionally account for (iii)

responses based on non-target items. Such responses have become known as “swap errors”

and this mixture model has also become known as the swap error model. It is implemented in

the MixtureFit [5] and MEM toolboxes [23] and has been applied to data from a large number

of empirical studies. It can provide estimates of swap error rates and guess rates, and can mea-

sure how precisions change with load and delay length. Further work in this vein includes the

“variable precision” model which accommodates trial-to-trial variability in precision by

modelling responses with a circular t-distribution rather than a circular Gaussian [24, 25].

These heavier-tailed distributions have called into question the need for guessing terms at all,

as an apparent increase in guess rate with set size may simply reflect an increasing prevalence

of low-precision representations. Such a “pure resource” model implies that there is no dis-

crete item limit in working memory, rather that all items are encoded but with a variability in

precision that depends on multiple factors including set size, alertness and covert shifts of

attention [6]. More recently, Shurgin et al. [26] have proposed a Target Confusability Compe-

tition (TCC) model in which working memory performance can be accurately described by

standard signal detection theory combined with an appropriately scaled and empirically deter-

mined psychophysical similarity function. TCC explains an impressive range of working mem-

ory phenomena and, as with the variable precision models, does not require guessing terms. It

has also been proposed that the similarity function in TCC is closely related to the tuning func-

tions of population coding models, but there is an ongoing debate as to the exact nature of this

relationship [26, 27].

Foundational work with neuronal models describes, for example, how dopaminergic input

to recurrent networks causes changes in excitatory and inhibitory channel conductances

thereby switching circuits in prefrontal cortex into (and out of) dynamical regimes in which
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persistent cell activity can support working memory [28–30]. Generally, neuronal models are

not usually directly fitted to empirical data but there are exceptions. One of these is the

Dynamic Neural Field approach of Schoner and Spencer [18]. These models describe the activ-

ity of inhibitory and excitatory neurons arranged into one- or two-dimensional neural fields

that also capture the dynamics of persistent cell firing. The interaction of multilple neural fields

from different putative brain regions then explains a number of empirical phenomena includ-

ing load effects, delay effects, load-by-delay interactions, and repulsion effects [31, 32]. An

alternative modelling framework relies on a population coding perspective [33] in which stim-

ulus information is encoded and decoded from the noisy activity of a large population of neu-

rons each responsive to different stimulus features. Importantly, this explains the limited

precision of WM as arising from a finite neuronal resource such as the number of neuronal

spikes or neuronal energy budget. Other modelling work accommodates recent empirical find-

ings that WM may not be instantiated by persistent cell firing but rather by more dynamic rep-

resentations that wax and wane during maintenance intervals. For example, using spiking

neural network simulations Fiebig et al. [34] show that a fast-expressing form of Hebbian plas-

ticity can support WM using oscillatory burst activity, and Bouchacourt and Buschmann [35]

show that a two-component architecture with sensory networks coupled to a central randomly

connected recurrent network can support WM using mixed static and dynamic

representations.

The Stochastic Attractor models (SAs) in this paper offer a level of description intermediate

between cognitive and neuronal models. They are based on the mechanism of attractor

dynamics but have no explicit neurons or synaptic dynamics. To a degree, this gives the mod-

els similar explanatory power but they are easier to fit to empirical data. As with cognitive

models, the Stochastic Attractor approach provides a compact model of the recall probability

density. In addition it provides an analytical expression (via the Fokker-Planck equation) for

how this density evolves over time so, in this regard, provides a more parsimonious represen-

tation than mixture, TCC, variable precision and population coding models which require

additional parameters at each delay length of interest. As we show in this paper, this also allows

us to compute new and useful quantities such as the swap-error curve.

The focus of this paper is on modelling behavioural data from continuous-report visual

working memory tasks and we provide Matlab code to support this (https://github.com/

wpennyUEA/StochAttractVWM). However, in S1 Text (see also Discussion) we show how

this framework could be generalised to a Multiple Attribute formalism that may reflect the dis-

tributed nature of neural processing during working memory tasks [36–39].

2 Methods

2.1 Attractor dynamics

This section reviews the Stochastic Attractor formalism proposed by Panichello et al. [12] as a

model of working memory. The main idea behind stochastic attractors is that there are two

distinct forces governing the dynamics of memory traces—the first being a stochastic force

that causes traces to randomly diffuse over time, and the second being a deterministic force

that directs traces towards attractor states (stable fixed points). Mathematically, a memory

trace for attribute x (e.g. colour, location or orientation) evolves according to the Stochastic

Differential Equation (SDE)

dx ¼ bgðxÞdt þ sdw ð1Þ

where dw is a stochastic diffusion term that follows a Wiener process [40, 41], g(x) is a deter-

ministic flow function, with σ and β controlling the magnitudes of the two forces.
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Eq 1 can be written as a dynamical equation governing the evolution of the probability den-

sity over x. This is known as the Fokker-Planck equation [42] and is given by

@

@t
pðx; tÞ ¼ �

@

@x
½bgðxÞpðx; tÞ� þ

s2

2

@
2

@x2
pðx; tÞ ð2Þ

If we discretise x into bins the above equation can be written as

@

@t
pðx; tÞ ¼ Mpðx; tÞ ð3Þ

where p(x, t) is the probability density (a [B × 1] vector), M is a [B × B] Markov transition

matrix constructed from the flow and diffusion terms, and B is the number of bins. The results

in this paper were obtained with B = 100. The density at time t is then given by

pðxtÞ ¼ exp½Mt�pðx0Þ ð4Þ

where exp[] denotes the matrix exponential, and p(x0) is the initial density (after encoding).

See Harrison et al. [43] and Deco et al. [44] for applications of the Fokker-Planck equation in

systems neuroscience. More introductory material including applications of differential equa-

tion models in neuroscience and prototype models of working memory can be found in [45].

2.2 Flow functions

In their empirical data, Panichello et al. [12] found that memory reports clustered around spe-

cific values (similar findings have been made in other studies [14, 15]). This motivated them to

employ a flow function with stable fixed points that could correspond to the cluster centres.

These were identified by parameterising a flow function using a basis set and estimating the

corresponding parameters from empirical data. The basis set comprised J first derivatives of

the Von-Mises distribution each separated by 1 standard deviation

gðxÞ ¼
XJ

j¼1

wj�
0 2p

J
j;

2p

J

� �

ð5Þ

where ϕ is the Von-Mises density parameterised by a mean and standard deviation and ϕ0 is its

derivative. The parameters w are estimated when the model is fitted to participants responses.

This produces a number of stable fixed points that correspond to the response biases. We refer

to this as the Response-Bias flow function. In their empirical work, Panichello et al use J = 12.

In this paper we propose a different flow function. On each trial we choose the stable states

to correspond to the values of the attributes to be remembered. For example, if we have 3 col-

ours to remember with values x = 2, 4, 5 (e.g. from a colour wheel) then these stable states can

be instantiated using the flow function shown in Fig 2. This is created by ensuring that the

derivative of g(x) is negative at those values of x. We instantiate this by creating g(x) in a piece-

wise manner. The first piece corresponds to a negative sinewave, −sin(x), starting at the first

value of x to remember with its frequency set so that a complete cycle will have been taken

when it reaches the second value of x. This continues for all values of x until g(x) is complete.

We refer to this as the Multi-Item flow function. This constructive approach is also advanta-

geous from a statistical perspective as there are no parameters to estimate. The evolution of the

probability density for this Multi-Item flow function is shown in Fig 3, with the attractor

switched off (β = 0) in the left panel and switched on in the right panel (β = 1). Models with β
= 0 are referred to as Pure Diffusion (PD) models. Flow functions of the sort shown in Fig 2

result in “error-correcting” dynamics because as memory traces drift away from stable fixed

points they are pulled back by a flow force that increases in strength in proportion to the error
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(up to a limit). In this paper we will fit Response Bias, Multi-Item and Pure Diffusion models

to empirical data and use a model comparison metric to assess which is best. Previously, Pani-

chello at al. [12] have found evidence in favour of Response Bias rather than PD models.

We close this section with reference to Fig 4 which compares solution of the stochastic dif-

ferential equation (Eq 1) using the Fokker-Planck approach (right panel) with the Euler-Mar-

uyama [41] stochastic integration method (left panel). The plots show good agreement, with

the benefit of the Fokker-Planck being that we have a closed-form expression (Eq 4) for the

density as a function of delay.

Fig 2. Flow function. This flow function (solid line) creates stable fixed points at x = 2, x = 4 and x = 5. If x is just

above 2 it will experience a negative flow i.e. towards 2. Similarly if it is just below 2 it will experience a positive flow i.e.

towards 2. Therefore x = 2 is a stable fixed point. Similarly for x = 4 and x = 5. More generally, stable fixed points occur

at values of x for which g(x) is zero and the slope of g(x) is negative. The resulting basins of attraction and directions of

flow are indicated by the coloured background and coloured arrows.

https://doi.org/10.1371/journal.pone.0301039.g002

Fig 3. Evolution of memory traces. Memory traces evolve, from a delta function at initial state x = 4, according to the

stochastic differential equation dx = βg(x)dt+ σdw with flow function g(x) from Fig 2, with diffusive noise parameter σ
= 1, without the attractor (β = 0, left panel) and with the attractor (β = 1, right panel). Snapshots of the evolving

probability distributions are shown at t = 0.5, 1, 2 and 3s. Without the attractor, memory of the initial state x = 4 is

soon overwhelmed by diffusive noise. With the attractor, memory of the initial state is preserved via error-correcting

attractor dynamics, with some later leakage of probability mass towards neighbouring stable fixed points (initially to

x = 5 and later to x = 2).

https://doi.org/10.1371/journal.pone.0301039.g003
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2.3 Encoding, maintenance and recall

Here we specify encoding densities as given by a delta function situated at the item to be

remembered which is then convolved with a fixed-precision circular Gaussian

pðx0jz ¼ jÞ ¼ exp½seD�dðx � cjÞ ð6Þ

where D is a [B × B] diffusion matrix, cj is the jth item to be encoded, δ() is a delta function

equalling unity when its argument is zero and zero otherwise, and σe quantifies encoding

noise. This specification is a simplification of [12] which additionally included attractor

dynamics during encoding. We then assume that memory traces evolve as a stochastic

attractor with flow function g(x). This could correspond to that of a multi-item or response-

bias model (see previous section). That is

dx ¼ bgðxÞdt þ sdw ð7Þ

The delay density after time τ is then

pdðxjz ¼ j; tÞ ¼ exp½Mt�pðx0jz ¼ jÞ ð8Þ

where matrix M summarises the action of the stochastic dynamics. To account for decision

noise during recall, delay densities are convolved with a fixed-precision circular Gaussian

pðxjz ¼ j; tÞ ¼ exp½srD�pdðxjz ¼ j; tÞ ð9Þ

where σr quantifies decision noise. In previous work [12], model comparisons showed that the

inclusion of such a decision noise term was beneficial.

2.4 Guesses

Mixture model accounts of data from continuous report tasks [5] allow for the possibility that,

on a proportion of trials, participants simply guess. This proportion can then be estimated

using the mixtureFit.m algorithm [5] from the Analogue Report toolbox (www.bayslab.com)

or similar code in the MemToolbox from www.visionlab.github.io/MemToolbox/ [23]. Here

we adopt the same approach by incorporating an additive guessing term to the report likeli-

hood. The likelihood of participant response yn on trial n is then

pðynjyÞ ¼ ð1 � lÞpðx ¼ ynjz ¼ î; tnÞ þ l
1

2p
ð10Þ

where τn is the maintenance interval on trial n, î indexes the target on trial n, and λ is the

Fig 4. Solution of stochastic differential equation. Left Panel: 10,000 sample paths from the Euler Maruyama

method, Right Panel: Fokker-Planck method. Snapshots of the Fokker-Planck density are show at selected time points

in the right panel of Fig 3.

https://doi.org/10.1371/journal.pone.0301039.g004
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guessing (or “non-encoding”) probability, and θ are the model parameters—see below. We

also consider models without guessing terms in which case

pðynjyÞ ¼ pðx ¼ ynjz ¼ î; tnÞ ð11Þ

2.5 Swap errors

Similarly, mixture models of continuous report tasks also allow for “swap errors”, where partici-

pants report from the density of a non-target item. We could therefore use a likelihood that

includes both guesses and swap errors

pðynjyÞ ¼ ð1 � l � aÞpðx ¼ ynjz ¼ î; tnÞ þ a
1

m

Xm

i¼1

pðx ¼ ynjz ¼ i; tnÞ þ l
1

2p
ð12Þ

where i indexes non-targets and α is the swap-error probability. This additional swap-error

term does not need to be included for Multi-Item dynamics, as swaps are already accommo-

dated by a process in which memory traces diffuse away from their initial state and are captured

by another items’ attractor (see Fig 3 and next section). However, the Response-Bias model pro-

posed in Panichello et al., and Pure-Diffusion models do include this additive swap error term.

2.6 Swap error curves

In the multi-item model (see right panel of Fig 3), a memory trace evolving from initial encod-

ing at x = 4 is more likely to be captured by an attractor at x = 5 than an attractor at x = 2. That

is, the probability density will tend to be higher at attractor states closer to the encoded item

than at attractor states further away. Moreover, the probability mass captured by other attrac-

tors (the swap probability) tends to increase with time. This increase in swap errors with delay

is also reflected in empirical data, for example, in plots of the α parameter in Fig 2C of Pertzov

et al. [19]. Additionally, the density at non-target items can exhibit non-monotonic effects e.g.

some of the probability mass captured at x = 5 later diffuses to x = 2. The multi-item model

therefore seems well-suited to capturing swap-errors in empirical data without additional

parameterisation.

Once the parameters of the multi-item model have been fitted to empirical data we can

compute the probability mass lying in the basins of attraction of non-target items (e.g. pink

and purple regions in Fig 2 if x = 4 is the target item). Moreover, because the stochastic

attractor is a time series model (see Eq 4) swap error rates can be computed at arbitrary delay

lengths (including those for which no empirical data was provided) without the need for addi-

tional parameterisation. This gives rise to Swap Error Curves which are generated by first fit-

ting the multi-item model to empirical data, and then sampling responses as follows. On each

simulated trial we (i) generate a stimulus array with cue and report attributes drawn from a cir-

cular uniform density (with minimum inter-item distance 30 degrees), (ii) compute the report

density using Eq 9, and (iii) compute the probability mass in the basins of attraction of non-

target items. This is repeated for S = 20 trials at each level of load and delay of interest. We

then compute a mean swap error curve from the S simulations and confidence intervals from

the standard error of the mean.

2.7 Model parameters

Model parameters govern encoding noise (σe), attractor strength (β), diffusion strength (σ2),

decision noise (σr) and guess rates (λ). The Response-Bias and Pure-Diffusion models
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additionally have swap error rates (α). Response-Bias models additionally have a J-dimen-

sional parameter vector w (with J usually set to 12 [12]) that weights basis functions for

approximating the flow function (see Eq 5).

In order to constrain parameter estimates within a sensible range our optimisation algo-

rithm works with “latent” parameters, θ, which define parameters through nonlinear trans-

forms as follows. To produce the parameters β, σ, σe, σr we use scaled sigmoidal transforms of

latent parameters so that the parameters of interest take on a range of values similar to that

found in previous empirical work. These are [0, 15] for β, [0.01, 1.5] for σ, and [0.01, 0.1] for

σe, σr. We use a softmax transform for w (so that the sum over weights equals 1). The use of

latent parameters and sigmoidal/softmax transforms are widely used in other behavioural and

neuronal modelling contexts [46–48].

In this paper we allow the diffusion parameter σ to vary across load. This is in line with the

view that internal representations of sensory stimuli are noisy, and that the level of this noise

increases with the number of stimuli in memory. This dependence on set size is also shared by

models of attention [6]. It is, of course, possible to allow additional parameters to vary with

load as in [12] and we return to this issue in the discussion.

Guess rates are also allowed to vary across load xl, delay yd and their interaction using a lin-

ear model (Eq 13) where xl and yd are normalised to have zero mean. This was again imple-

mented using the latent parameter approach. For guess rates we have

ald ¼ r1 þ r2xl þ r3yd þ r4xlyd

lld ¼ lmaxSigmoidðaldÞ
ð13Þ

for load level l, delay level d with λmax = 0.2. Inferences about main effects and interactions over

a group of subjects can then be implemented using t-tests across estimates of ρ2, ρ3, ρ4. A similar

parameterisation is used for swap rates for the Response-Bias and Pure-Diffusion models.

2.8 Prior, likelihood and joint likelihood

In what follows Nðm;RÞ is a Gaussian distribution over random variable x with mean vector m
and precision matrix R. We define a Gaussian prior over the latent parameters

pðyÞ ¼ Nðw0;R0Þ

R0 ¼ diagðr0Þ

r0 ¼
1

s0

� �2
ð14Þ

where the prior mean w0 is a zero vector, R0 is a diagonal prior precision matrix with prior

standard deviation set to σ0 = 1.68. We have P model parameters. When θ are sigmoidally

transformed this gives an approximately uniform distribution over the parameters of interest.

Empirically, we are given response data Y = {y1, .., yn, . . ., yN} over N trials where the data

on trial n is the participants ‘response’ yn, that is, their estimate of the target orientation, loca-

tion or colour (depending on the experimental paradigm). The log-likelihood is therefore

LðyÞ ¼
XN

n¼1

Ln

Ln ¼ log pðynjyÞ

ð15Þ

where the definition of p(yn|θ) depends on whether we include guessing terms (Eq 10 for

guesses, Eq 11 for no guesses) or both guessing and swap error terms (Eq 12). We emphasise
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that the multi-item model does not require an additive swap term as swaps naturally occur in

the model (see above). The log of the joint likelihood and prior, to be used in model fitting, is

then

JðyÞ � log½pðYjyÞpðyÞ�

¼ LðyÞ þ log pðyÞ
ð16Þ

The computational bottleneck in model fitting is determined by computation of the likeli-

hood which is, in turn, dominated by computation of the matrix exponential in Eq 4. For the

RB and PD models we can compute Ald = exp(Mltd) at load l and delay length d, a quantity

which is constant for all trials at those loads and delays. This quantity can therefore be pre-

computed prior to optimisation thus reducing model-fitting time. But for the MI model this is

not the case because the flow function is trial-specific, which means that M and therefore A is

trial-specific. This means that the MI model takes longer to fit and model fitting time is pro-

portional to the number of trials.

2.9 Model fitting

Model parameters were estimated by maximising J(θ) using a Quasi-Newton algorithm imple-

mented in the function fminunc.m from Matlab’s optimisation toolbox. Unless otherwise

stated below, the optimisation was run from a single initialisation (a random sample from the

prior) for a maximum of 256 iterations. Preliminary experiments on MI and PD models

showed only very weak dependence on parameter initialisation (not enough to influence the

results of model comparison)—but see below for comments on RB models.

Model fitting produces estimated parameter values wk � ŷ for subject k. At the end of opti-

misation we compute a full posterior precision matrix using the outer-product approximation

Rk ¼ R0 þ
XN

n¼1

dLn

dy

� �
dLn

dy

� �T

ð17Þ

The posterior covariance is then computed as Ck ¼ R� 1
k . As an aside we note that if one is

merely interested in computing posterior variances, rather than covariances, we need to take

the diagonal after the matrix inverse (diagonalising before inverting does not give the correct

result). Overall, within-subject model fitting for subject k produces the approximate posterior

qðykÞ � pðykjYkÞ

¼ Nðwk;RkÞ
ð18Þ

2.10 Model comparison

In the empirical work in this paper, we compare (A) Multi-Item models, where the stable fixed

points correspond to the multiple items to be remembered (as proposed in this paper), to (B)

Response-Bias models where the stable fixed points correspond to response biases (as pro-

posed in [12]), to (C) purely diffusive models which have no deterministic force directing

memory traces to stable fixed points (β = 0).

For within-subject model fitting, the Bayesian log evidence for model m fitted to data from

subject k is given by the Laplace approximation [13]

FkðmÞ � log pðYkjmÞ

� JðwkÞ þ
1

2
log jCkj þ

P
2
logð2pÞ

ð19Þ
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where wk ¼ ŷ are the estimated values from model fitting, Ck is the posterior covariance

matrix, |Ck| its determinant, P is the number of model parameters, and Yk is the response data

from subject k. Given the model evidence we can then use Bayes rule to compute the posterior

distribution over models

pðmjYkÞ ¼
pðYkjmÞpðmÞP
m0pðYkjm0Þpðm0Þ

ð20Þ

assuming a uniform prior p(m). When comparing two models we can use Bayes factors, BFij =

p(Yk|m = i)/p(Yk|m = j) [49]. Group Log Bayes Factors, Gij can then be computed as follows

Gij ¼
XK

k¼1

½FkðiÞ � FkðjÞ� ð21Þ

2.11 Cluster model

We also analyse data from the Colour-Report task [12] to identify clustering of reports around

response biases (see “Colour-Report Task” in the results section below for the reason why).

We used a matlab implementation (https://github.com/chrschy/mvmdist) of a Mixture of

Von-Mises model [50] which fits the colour report data using an Expectation-Maximisation

algorithm [50]. For each putative number of clusters, c, we computed the Bayesian Informa-

tion Criterion

BICðcÞ ¼ L �
P
2
log N ð22Þ

where L is the log-likelihood of the cluster model, N is the number of data points and P is the

number of model parameters (as each cluster has a mean, precision and frequency parameter

we have P = 3c).

2.12 Empirical data

This paper analyses previously acquired data from two continuous report visual working

memory experiments where reports are given at multiple loads and delay lengths. The generic

structure of these tasks is shown in Fig 1.

2.12.1 Location-report task. Schneegans and Bays 2018 [8] present results from ten par-

ticipants performing a location report visual working memory task. After the presentation of a

fixation cross, participants were presented with an array of 1, 2 or 4 coloured disks (chosen

from the colours red, blue, yellow and green). The array was presented for 2s (encoding

period) and disks were located on an invisible circle with a fixed radius from the fixation cross.

The minimum distance between neighbouring items was 30 degrees. This encoding period

was followed by a pattern mask display (visible for 0.1s) and a delay period when just the fixa-

tion cross was present. The total memory delay including mask display was 0.5, 1, 2 or 4s. The

fixation cross was then replaced with a centrally presented response cue in the form of a col-

ored disk, which matched the color of one of the disks from the encoding array. Participants

then had to make a saccadic eye movement to the memorised location of the disk. The 4 delay

lengths crossed with 3 load levels gives rise to 12 experimental conditions. There were approxi-

mately 19 trials per condition leading to a total of 230 or so trials per subject. Full details of the

paradigm are available in [8] and the data we refer to are from “Experiment 1” of that paper.

These data are available from https://www.paulbays.com/publications.php.
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2.12.2 Colour-report task. This data come from an experiment in which 90 subjects per-

formed a color-report visual working memory task [12] in which they reported the colour of a

spatially cued sample after a variable delay (1s or 7s). Each sample was located at one of eight

possible spatial locations. The colours were drawn from a uniform distribution on a colour cir-

cle with the caveat that colours presented on the same trial had to be at least 22 degrees apart

in colour space. Reports were made by adjusting the hue of the response probe by rotating a

response wheel using a mouse (see Fig 1 in [12]). The mapping between wheel angle and col-

our was rotated on each trial to prevent spatial encoding of colour memories. Additionally,

there were two load levels comprising either 1 or 3 items. Data for each subject comprises up

to 200 trials in all, with 50 in each of four conditions. These conditions vary over the combina-

tions of 2 load levels (1 and 3 items) and 2 delay lengths (1s and 7s). Overall, after rejecting

subjects who made too many guesses, data was available for 30 subjects who did the task in a

laboratory setting and 60 who did it online. For further details, see the description of Experi-

ment 1a in [12].

3 Results

In what follows we first fit multi item, response bias and pure diffusion models to synthetic

data in order to validate our parameter estimation and model comparison procedures and to

assess their efficacy as a function of sample size (number of data points). We then fit these

models to empirical data from colour and location report tasks. Finally, we compare models

with and without guess rates, as this has become an important distinction in the WM

literature.

3.1 Synthetic data

We generated synthetic data from Multi-Item (MI), Response-Bias (RB) and Pure-Diffusion

(PD) models. Data was generated for ten synthetic subjects with 250 trials per condition where

the conditions varied over the combinations of load (1 or 3 items) and delay (1 or 7s) as in

[12]. This “Large Dataset” therefore comprised 1000 trials per subject—see below for “Small

Dataset”. True model parameters were β = 7 (zero for the pure-diffusion model), σ2 = 0.25 for

load 1 and σ2 = 1 for load 3, σe = 0.05 and σr = 0.05. For the Response-Bias model, the true sta-

ble fixed points were set to 1.1, 2.9, 4.3 and 5.9 (similar to the cluster peaks in Fig 1C in [12])

and J = 12 basis functions were used to approximate the flow functions (see Eq 5).

For each simulated trial, location and colour cues were drawn from a uniform circular dis-

tribution, but with a minimum inter-item separation of 30 degrees. In order to focus on the

identification of attractor parameters we set the true guess rate to zero (at all levels of load and

delay) and the true swap rates to zero for the RB and PD models (for all levels of load and

delay). We fitted the MI (P = 9 parameters), RB (P = 25) and PD (P = 12) models to each simu-

lated data set.

Model parameters and model evidence were then estimated as described in the methods

section. Bootstrapped estimates of the mean estimated parameter values for the Multi-Item

model are plotted in Fig 5 and show reasonable agreement with the true values. Fig 6 shows

the results of the model comparison. Overall, we see that the correct model is identified in 29/

30 simulations. For the simulation in which the true model did not have the highest model evi-

dence, data from a multi-item model was attributed to a pure-diffusion model (left panel in

Fig 6).

In more detail, Table 1 below shows the group log Bayes factors of the fitted model with

respect to the best fitted model. The entry -45 (which is on average -4.5 per subject), for
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example, means that the MI model of the PD data is on average exp(−4.5) = 0.011 times as

likely as (or about 90 times less likely than) the PD model of the PD data.

Informally, we note that model identification is possible for the following reasons. Data

from the Multi-Item (MI) and Response-Bias (RB) models are not easily confused because the

stable fixed points are trial-specific for MI but not for RB. Therefore no RB parameter setting

can account for MI data, and MI parameter settings can’t account for RB data (as the fixed

points will be in the wrong place—they can’t move from trial-specific values). Similar argu-

ments apply to the Pure-Diffusion (PD) and RB models.

So far, so good. However, empirical datasets typically contain far fewer than 250 trials per

condition. We therefore repeated the above simulations but with a “Small Dataset” with 50 tri-

als per condition per subject. Whilst the model fitting and inference procedures worked well

for the MI and PD models they were only able to correctly identify the RB models for 5 out of

10 subjects. Additionally, estimates of the RB flow-function were compromised. Reducing the

number, J, of basis functions parameterising the RB flow function (see Eq 5) did not help.

Fig 5. Synthetic data: Estimates of attractor parameters from multi-item model. Left Panel: Bootstrapped

distributions of mean attractor strength, β,. True value was 7. Right Panel: Bootstrapped distributions of mean

diffusion parameters, σ2, at loads 1 and 3. True values were 0.25 and 1.

https://doi.org/10.1371/journal.pone.0301039.g005

Fig 6. Synthetic data: Model comparison. The gray scales indicate the (posterior) probability (see Eq 20) that the data

were generated from Multi-Item, Response-Bias or Pure-Diffusion models, with 1 shown in white and 0 in black (rows

in each image sum to 1). The left, middle and right panels indicate simulations for which the true model was Multi-

Item, Response-Bias, and Pure-Diffusion, respectively. Overall, we see that the correct model is identified in 29/30

simulations (see main text).

https://doi.org/10.1371/journal.pone.0301039.g006

Table 1. Group log bayes factors for large synthetic dataset and within-subject model fitting. The entries in the

table are group log Bayes Factors, Gij (see Eq 21), of fitted models with respect to the best fitted model (a 0 indicates the

best fitted model). The true models are correctly identified.

True Model Fitted Model

MI RB PD

MI 0 -1948.5 -1066.1

RB -3620.1 0 -3634.9

PD -45.0 -1002.6 0

https://doi.org/10.1371/journal.pone.0301039.t001
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This therefore motivated us to run a single optimisation using data from all 10 subjects,

resulting in 500 trials per condition. These “Group-Fitted” results are presented in Table 2

and, unsurprisingly, provide excellent model comparison results.

We then ran model fits for individual subjects data using a parameter initialisation from the

group-fitted solution. This worked well for the MI and PD models but only 6/10 RB models

were correctly identified. This shows that careful model initialisation, to help avoid local max-

ima, is not always sufficient for correct model identification. Indeed, the problem here is not

one of local maxima as the log-likelihoods of the RB models were maximal in all 10/10 subjects.

Rather, the signal to noise ratio is not high enough in single subject data to correctly identify

RB models at the within-subject level. Overall, the findings from this section show that MI and

PD models can be correctly identified at the within-subject level, but that RB models can only

be reliably identified at the group level.

3.2 Colour-report task

Here we use the data from Panichello et al. [12]. We fitted three models to each subject’s data

(i) the Multi-Item model with guessing term, (ii) the Response Bias model with guessing and

swap error terms and (iii) the Pure Diffusion model with guessing and swap error terms. For

each model the diffusion noise level was also allowed to vary across load.

We first report results from a “group-fitted” model in which models are fitted to data from

all subjects. As local maxima are of greatest concern for the RB model we ran 8 optimisations,

each with a different initialisation, and selected the model with the highest joint likelihood.

The MI and PD models were run from a single initialisation. The RB model was identified as

the best with a Log Bayes Factor of 556.6 wrt to PD and 600.4 wrt MI. These results are in

agreement with [12] in that RB has greater model evidence than PD.

Fig 7 shows the estimated flow function. This has stable fixed points (zero-crossings) close

to the cluster peaks in Fig 1C in [12], consistent with the idea that attractor dynamics creates

the clustering of participant responses. To assess potential between-subject variability we then

fitted models to data from individual subjects, but initialising model parameters to the group-

fitted solution to help avoid local maxima (as in the previous section on simulated data).

Despite this, model comparison resulted in the MI model being favoured in 65/90 subjects and

PD in 25/90 subjects. The average log Bayes factors in favour of MI were 5.5 wrt PD and 72.1

wrt MI.

To find out what is driving the discrepancy between group-level and subject-level findings,

we implemented a cluster analysis on the 90-subject empirical colour report data using a Mix-

ture of Von-Mises model [50] (described in the methods section). This was repeated using

data from a number of subjects that varied from 1 to 25 and the Bayesian Information Crite-

rion (BIC) was used to compute the optimal moder order. At each group size we ran 50 repli-

cations where, at each replication, data was drawn from subjects chosen randomly without

Table 2. “Group-Fitted” log bayes factors for small synthetic dataset. he entries in the table are log Bayes Factors

with respect to the best fitted model (a 0 indicates the best fitted model). The true models are correctly identified.

True Model Fitted Model

MI RB PD

MI 0 -269.2 -153.8

RB -1028.7 0 -1023.8

PD -4.6 -122.3 0

https://doi.org/10.1371/journal.pone.0301039.t002
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replacement from the 90 subjects available. The results in Fig 8 show that clustering of partici-

pant’s responses around biases is not evident given data from single subjects. Indeed, the emer-

gence of the 4 clusters that are clearly evident in Fig 1c of [12] (computed using data from 90

subjects) does not appear until data from about 10 subjects are used. Overall, these results

show that response biases are clearly manifest at the group level. But at the subject level, the

Fig 7. Colour report task: Estimated flow function for group-fitted response-bias model. This flow function was

parameterised according to Eq 5. The zero crossings correspond to stable fixed points and are in similar positions to

cluster peaks in response histograms, consistent with the idea that clustering of responses is driven by attractor

dynamics.

https://doi.org/10.1371/journal.pone.0301039.g007

Fig 8. Colour report task: Clustering of responses in group data. The figure plots the mean number of inferred

clusters versus the number of subjects’ data used. Inference was made using the Bayesian Information Criterion with a

Mixture of Von-Mises clustering model (see section 3.11.

https://doi.org/10.1371/journal.pone.0301039.g008
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attraction of memory traces toward target and non-target items, as captured by the Multi-Item

model, is a stronger effect. These findings are consistent with the individual data being under-

powered to detect response biases, and consistent with our findings from synthetic data (see

above section).

Figs 9–11 show bootstrapped estimates of the mean attractor strength, diffusion strength,

guess rates and swap curves for the within-subject Multi-Item models. Diffusion strength

increases with load (paired t-test on log parameter estimates, t(89) = 17.0, p< 10−6). The ratio

of the strength of the flow force, β, to the diffusion force, σ2, was estimated to be 134 at load 1

and 21.2 at load 3, indicating that the relative strength of the attractor is reduced at high load.

We return to this issue in the discussion.

The guess rates are more or less identical to those reported in [12] (Supplementary Fig 10).

We found a main effect of load (t(89) = 14.2, p< 0.001), a main effect of delay (t(89) = 6.91,

p =< 0.001) but no interaction (t(89) = 0.78, p = 0.439). The swap rates are higher than those

reported in [12], possibly due to the different way in which swaps are defined (see methods

section).

Fig 9. Colour report task: Attractor parameters for multi-item model. Left panel: Bootstrap distribution of mean

attractor strength β, Right panel: Bootstrap distributions of mean diffusion parameters, σ2, at loads 1 and 3.

https://doi.org/10.1371/journal.pone.0301039.g009

Fig 10. Colour report task: Guess rates for multi-item model. Bootstrapped distributions of guess rate at two levels

of load and delay.

https://doi.org/10.1371/journal.pone.0301039.g010
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3.3 Location-report task

Here we use the data from Schneegans and Bays’ location-report task [8]. We fitted three mod-

els to each subject’s data (i) the Multi-Item model with guessing term, (ii) the Response Bias

model with guessing and swap error terms and (iii) the Pure Diffusion model with guessing

and swap error terms.

We fitted an RB model to data from all 10 subjects and ran the optimisation from 8 different

initialisations. The MI and PD models were also fitted to this group data. The preferred model

was MI with a log Bayes factor of 130.8 wrt RB and 113.9 wrt PD. We then used this group-fit-

ted solution to initialise model fits to individual subject data. We found that MI was best for

10/10 subjects with a mean log Bayes factor of 80.8 wrt RB and 38.8 wrt PD.

There is therefore no evidence for attractor dynamics toward response biases within this

data set. These results do however support the hypothesis of attractor dynamics toward multi-

ple items. Moreover, this is favoured over the alternative hypothesis of a pure diffusion pro-

cess. These results therefore agree with Panichello et al. in that working memory maintenance

is not a purely diffusive process. Rather, error-correction is embodied within attractor dynam-

ics that contain both diffusive and attractive components.

The diffusion parameter was allowed to vary with load and we indeed observed a main

effect of load (using an F-test on log-transformed parameter estimates, F(2, 29) = 57.4,

p< 0.001). Fig 12 show estimates of the attractor and diffusion strengths which are similar to

those shown in Fig 6 of Panichello et al. [12]. Diffusion strength increases with load leading to

the weakening of relative attractor strength with load (β/σ2 = 197 at load 1 and reduces to 68.1

at load 2 and 24.6 at load 4).

For the guess rate, see Fig 13, we found a main effect of load (t(9) = 2.70, p = 0.024), a main

effect of delay (t(9) = 4.32, p = 0.002) and an interaction (t(9) = 2.74, p = 0.023). Fig 14 shows

the swap error curves at loads 2 and 4 as estimated by the Multi-Item model (there are, of

course, no swaps at load 1).

Fig 11. Colour report task: Swap error curves from multi-item model. Mean swap error curve over group of

subjects for memorising 3 items. The grey shading indicates the confidence interval.

https://doi.org/10.1371/journal.pone.0301039.g011
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Schneegans et al. [8] fitted the swap error mixture model to this data and the overall swap

error rate was reported to be 2.2%. The swap error curves from the Multi-Item model estimate

swap errors to be between 1 and 5% depending on load and delay (see Fig 14) which are

broadly consistent.

3.4 Models without guesses

In this section we again fit the multi-item stochastic attractor model to empirical data but this

time allowing for model variants without guessing terms. Specifically we compare three types

of model; (i) a model MG0 without guesses, (ii) a model MG1 with a single extra parameter

governing average guess rate (over load and delay), and (iii) a model MG4 with four extra

guess rate parameters that allow guess rate to vary across load and delay.

Before analysing the empirical data we first fit the models to simulated data where the

ground truth is known. We consider simulated data with true guess rates of λ = 0 (data set G0)

and (ii) λ = 0.1 (across all levels of load and delay, data set G1). The models generating the data

are otherwise identical to those described in section 4.1 and we generated 50 trials per

Fig 12. Location report task: Attractor parameters for multi-item model. Left panel: Bootstrap distribution of mean

attractor strength β, Right panel: Bootstrap distributions of mean diffusion parameters, σ2, at loads 1, 2 and 4.

https://doi.org/10.1371/journal.pone.0301039.g012

Fig 13. Location Report Task: Guess Rates from Multi-Item model. Bootstrapped distributions of mean guess rate at

various combinations of load and delay (0.5, 1, 2 or 4 seconds).

https://doi.org/10.1371/journal.pone.0301039.g013
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condition for each of 10 subjects. For data set G0 model MG0 was favoured in 9/10 subjects,

MG1 was favoured in 1/10 subjects, and MG4 in 0/10 subjects. The average (over subjects) log

Bayes Factors were 3.42 in favour of MG0 versus MG1, and 5.75 in favour of MG0 versus

MG4. For data set G1 model MG0 was favoured in 0/10 subjects, MG1 was favoured in 10/10

subjects, and MG4 in 0/10 subjects. The average log Bayes Factors were 151.3 in favour of

MG1 versus MG0, and 4.88 in favour of MG1 versus MG4. Fig 15 shows that model MG1 pro-

vided accurate estimates of guess rates across both data sets.

For the location-report task model selection favoured the inclusion of guessing terms.

Model MG0 was favoured in 1/10 subjects, MG1 was favoured in 4/10 subjects, and MG4 in 5/

10 subjects. The average log Bayes Factors were 4.4 in favour of MG1 versus MG0, and 2.1 in

favour of MG4 versus MG1. Thus, the best model is the same as that described earlier with

model parameters as shown in Figs 12 and 13.

For the color-report task Model MG0 was favoured in 7/90 subjects, MG1 was favoured in

46/90 subjects, and MG4 in 37/90 subjects. The average log Bayes Factors were 91.4 in favour

Fig 14. Location report task: Swap error curves from multi-item model. Mean swap error curve over group of

subjects for memorising 2 items (left panel) and 4 items (right panel). The grey shading indicates the confidence

interval.

https://doi.org/10.1371/journal.pone.0301039.g014

Fig 15. Estimated guess rates on synthetic data. for data set G0 (true guess rate = 0) and data set G1 (true guess

rate = 0.1). Guess rates were estimated using a multi-item stochastic attractor model with a single guess rate parameter

(referred to as model MG1). See main text for further details.

https://doi.org/10.1371/journal.pone.0301039.g015
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of MG1 versus MG0, and 0.74 in favour of MG4 versus MG1. Thus, the best model is one with

at least one guessing parameter.

In terms of model parameters, the relative strength of the attractor at low memory loads

was estimated to be weaker for models without guessing terms (location task: 172:7 without

guessing versus 197 with, color task: 48 without guessing, 134 with) indicating that what were

previously accounted for as guesses are instead accommodated by weakening the attractor.

However, as indicated by the model comparisons, models that included guessing terms pro-

vided a more accurate description of the data. We return to this issue in the discussion.

4 Discussion

The Stochastic Attractor model of visual working memory proposed by Panichello et al. [12]

comprises a Pure-Diffusion variant in which memory traces diffuse away from their initial

conditions and a Response-Bias variant in which memory traces are made more robust via

attraction to archetypal values. One of the main findings of their work was that empirical data

do not support Pure-Diffusion processes—they found clear evidence in favour of “error-cor-

recting” attractor dynamics. In this paper we have proposed a third model variant, the Multi-

Item model, in which attractor states correspond to the multiple items to be remembered on a

single trial.

Our simulation results indicate that it is possible to identify the three model variants from

empirical data. However, the Response Bias model cannot be reliably recovered at the individ-

ual subject level unless there is a very large number of trials per subject. The multi-item and

pure diffusion model variants, on the other hand, are readily identifiable at both within-subject

and group levels.

Across both empirical data sets (colour and location report tasks) we found no evidence for

Pure-Diffusion. This is in agreement with Panichello et al. [12]. For the location report task we

found clear evidence in favour of the Multi-Item model. For the colour report task we found

mixed results. At the group level, the Response-Bias model was favoured. This is in agreement

with Panichello et al who also reported a group-level analysis. At the single subject level, how-

ever, the Multi-Item model was favoured. Thus, although response biases are clearly manifest

at the group level, the attraction of memory traces toward target and non-target items, as cap-

tured by the Multi-Item model, is a stronger effect. This analysis was confirmed by a cluster

analysis of participant responses which revealed that multiple clusters of response cannot reli-

ably be identified at the single subject level. These findings are also consistent with our simula-

tion results which indicate that the RB model can be reliably identified at the group-level, but

without unrealistic sample sizes, not at the subject-level.

A consistent finding across both empirical data sets was that the multi-item model provided

the best explanation of the data. A possible concern regarding this and other findings is that

the location data set contains only a small number of trials per subject. Nevertheless we can be

confident in our findings because the reliability of the results is indicated in a number of ways:

(i) the posterior distribution over model parameters for individual model fits (see Eq 18), (ii)

Bayes Factors for model comparisons (these naturally become smaller with smaller data sets

[51]) and (iii) bootstrap estimates of parameters at the group level (for example, the violin

plots in Fig 13 show that as well as guess rates increasing at load 4, the uncertainty in these esti-

mates also increases).

The multi-item model proposes a simple mechanism by which swap-errors arise: memory

traces diffuse away from their initial state and are captured by another items’ attractor. We

have proposed a new concept, the Swap-Error Curve, defined as the swap error probability as a

continuous function of delay time, and have shown how it can be inferred from experimental
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data (see Figs 11 and 14). This is possible because Stochastic Attractors model the evolution of

the recall density as a continuous function of time. The swap error probability at any one time

is given by the proportion of probability mass captured by non-target attractors.

In this paper, effects of load are mediated through the diffusion parameters σ2 that are

allowed to vary across load. In previous work Panichello et al [12] have also allowed attractor

strength β to vary across load, and one of their empirical findings was that load increases both

σ2 and β and it was reported that increases in diffusion noise are held in check at higher loads

through stronger error-correction. In our simulation work, however, we found that parameter

estimates of σ2 and β are highly correlated. Indeed, if we generate data in which only σ2 is

increased across load then we find that both estimates of σ2 and β are increased. Although

Panichello et al. report increases in both σ2 and β with load, if we compute the ratio of β/σ2

(using the source data that accompanies Fig 6 in [12]), on average over subjects, this goes

down from 15.3 at load 1 to 12.7 at load 3. Thus the relative strength of the attractor reduces.

This is in line with our findings on both empirical datasets. Overall, we therefore conclude that

it is difficult to identify independent effects of load on diffusion and attractor strength using

behavioural data alone and that it is better to make inferences regarding relative attractor

strength as a function of load. Further, behavioural data provides evidence that relative

attractor strength decreases with load.

4.1 Future work

Whilst this paper has shown that a multi-item stochastic attractor model provides a good

description of data from two empirical data sets, further work should validate it across a much

broader selection of data encompassing a variety sensory features (e.g. orientation and shape

as well as colour and location), delay lengths (e.g. long-term as well as short-term memory)

and a variety of experimental paradigms (e.g. change detection and cue prioritization as well as

continuous report).

The Stochastic Attractor model, proposed by Panichello et al and including the multi-item

variant in this paper, considers there to be a decision noise process that is active during the

recall period that further diffuses the distribution over memory traces—see Eq 9. However, in

future work one might consider letting this diffusion process run as long as the Reaction Time

(RT) on each trial, thus making contact with the considerable literature on drift diffusion mod-

els of decision making [52] and working memory [53] and use empirical RT data to further

constrain parameter estimation. A more mechanistic approach would be to characterise how a

cue initiates the recall process (see multi-attribute model in S1 Text) and incorporate this into

Bayesian decision theory (see review of Bayesian decision models for WM in Bays et al [22]).

The multi-item model has assumed a Piecewise Sinusoidal (PS) flow function which has the

benefit of not having additional parameters to estimate whilst satisfying the main requirement

that stable fixed points are created for all items to be remembered. However, PS flow functions

have three rather specific characteristics; (i) basins of attraction will be asymmetric unless

memory items are uniformly spaced, (ii) the size of each half of the basin of attraction (clock-

wise or anti-clockwise) depends on distance between memory items, and (iii) they produce

global attractors because traces always experience an attractive force (flow functions are only

zero at the stable fixed points). In future work it would therefore be of interest to examine, for

example, flow functions that produce local rather than global attractors. One potential form of

local attractor is described in S1 Text.

Another possibility here would be to estimate multi-item flow functions from simulations

of neural network models that embody attractor dynamics e.g. [18, 34, 35]. A further step

would be to characterise how the flows change as a function of neuronal or experimental
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factors. This views the flow function as a central quantity of interest in working memory

research that may help to bridge the gap between cognitive and neuronal models.

We found that, in both the color report and location report tasks, models with guessing

terms were strongly preferred and find these results to be reliable as guess rates were veridically

estimated when using simulated data. Previous research, however, using Variable Precision

[25], Target Confusability Competition [26] and Population Coding [33] models have shown

that guessing terms are unnecessary if other aspects of the model are correctly configured.

This therefore raises the possibility that the PS flow functions instantiated in the multi-item

model are not an accurate characterisation of empirical WM systems. Conceptually, one

would expect that local attractor flows would yield the necessary heavier-tailed error densities

(than the global attractors specified by PS) and are therefore worthy of further enquiry.

Another direction for future work is to model both the evolution of the reported attribute

(as in the current paper) and the cued attribute using stochastic attractors. Inference over a

latent variable would then bind the two features together at retrieval. This “multiple attribute”

approach would provide a formal model of feature binding that could scale up to large num-

bers of features. This is described mathematically in S1 Text and might explain the empirical

finding that swap errors can depend on cue similarity [54, 55].

One could additionally add an extra hierarchical dynamical layer to the model whereby the

locations of the stable fixed points themselves evolve according to their own flow function (see

S1 Text). This would provide a straightforward way to account for repulsion effects whereby

fixed points repel if initially too close [32]. The resulting increase in distinctiveness of memory

traces is thought to improve feature binding [56]. If this was embodied in a multi-attribute

model, then this improvement due to feature binding would fall out mathematically.

Our results on the colour report task indicate that some effects require characterisation at

the group level, e.g. response biases, whilst others are evident at the single-subject level, e.g.

attraction to the stable states of multiple items. A third direction for future work is therefore to

incorporate all effects into a single model and estimate model parameters using a Hierarchical

Bayesian approach [57]. The within-subject Laplace approximation adopted in this paper

would fit naturally into such an approach and could make use of the variational mixed effects

algorithm [46, 58].

The final direction is to apply the models to datasets from clinical neuroscience, for example

[59], to identify basic mechanisms that go awry in clinical populations (e.g. excessive diffusion

in the cued attribute or the recall attribute, weak overall error-correction, insufficient attractor

repulsion) and to relate these to demographic, pharmacological and other clinical factors.

Supporting information
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(PDF)
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