
RESEARCH ARTICLE

Reinterpretation of the results of randomized

clinical trials

Farrokh HabibzadehID*

Global Virus Network, Middle East Region, Shiraz, Iran

* Farrokh.Habibzadeh@gmail.com

Abstract

Background

Randomized clinical trials (RCTs) shape our clinical practice. Several studies report a medi-

ocre replicability rate of the studied RCTs. Many researchers believe that the relatively low

replication rate of RCTs is attributed to the high p value significance threshold. To solve this

problem, some researchers proposed using a lower threshold, which is inevitably associ-

ated with a decrease in the study power.

Methods

The results of 22 500 RCTs retrieved from the Cochrane Database of Systematic Reviews

(CDSR) were reinterpreted using 2 fixed p significance threshold (0.05 and 0.005), and a

recently proposed flexible threshold that minimizes the weighted sum of errors in statistical

inference.

Results

With p < 0.05 criterion, 28.5% of RCTs were significant; p < 0.005, 14.2%; and p < flexible

threshold, 9.9% (2/3 of significant RCTs based on p < 0.05 criterion, were found not signifi-

cant). Lowering the p cut-off, although decreases the false-positive rate, is not generally

associated with a lower weighted sum of errors; the false-negative rate increases (the study

power decreases); important treatments may be left undiscovered. Accurate calculation of

the optimal p value thresholds needs knowledge of the variance in each study arm, a

posteriori.

Conclusions

Lowering the p value threshold, as it is proposed by some researchers, is not reasonable as

it might be associated with an increase in false-negative rate. Using a flexible p significance

threshold approach, although results in a minimum error in statistical inference, might not be

good enough too because only a rough estimation may be calculated a priori; the data nec-

essary for the precise computation of the most appropriate p significance threshold are only

available a posteriori. Frequentist statistical framework has an inherent conflict. Alternative
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methods, say Bayesian methods, although not perfect, would be more appropriate for the

data analysis of RCTs.

Introduction

Heavily relying on systematic reviews of randomized clinical trials (RCTs), evidence-based

medicine is currently considered the most appropriate way to practice medicine. A recent arti-

cle that examined more than 20 000 RCTs retrieved from the Cochrane Database of Systematic

Reviews (CDSR), arguably the most comprehensive database of evidence on medical interven-

tions, reports a mediocre replicability rate of the studied RCTs; the probability that a replica-

tion of the studied RCTs with p values ranging from 0.001 to 0.05, also ends with a significant

p value (conventionally, a p< 0.05) with an observed effect in the same direction is just a little

bit more than 40% [1]. Many researchers believe that the relatively low replication rate of

RCTs is attributed to the high p value significance threshold (PST), arbitrarily set to 0.05, and

that the PST should be chosen reasonably, not arbitrarily.

The idea of using the p value is often credited to Karl Pearson who outlined its basic frame-

work in 1900. However, it seems that it was John Arbuthnot who first employed the idea to

test a hypothesis in 1710 [2]. Arbuthnot reviewed the number of male and female neonates

born in London between 1629 and 1710 and found that the number of males was consistently

higher than that of females over 82 studied years. He calculated the probability of observing

such a consistent male excess by chance alone and found that it would be an incredibly small

value (0.582� 2.07 × 10−25), if the birth rates of males and females were really equal. He then

concluded that the observed difference was highly unlikely to occur at random under the

hypothesis that the birth rates are equal, and that the male birth rate was truly higher than the

female birth rate [2, 3]. In 1925, when Ronald A. Fisher formalized Pearson’s idea of the p

value, he arbitrarily proposed setting the PST at 0.05 (i.e., a 1 in 20 chance) [4].

Over the past years, several simulation studies have shown that a significant p value (con-

ventionally, a p< 0.05) can easily be attained merely by chance, which implies that many of

the “significant results” obtained in RCTs could really be false-positive [5–7]. To address this

problem, some investigators have proposed setting the PST at a lower value [8–11]. For

instance, Ioannidis has proposed to lower the PST from the conventional value of 0.05 to 0.005

[11], a proposal that has also been supported by Benjamin, et al [10]. McCloskey and Michail-

lat have also proposed to decrease the PST from 0.05 to 0.01 [12]. All these proposals for a

smaller but fixed PST, nonetheless, suffer from the very same problem that the conventional

PST of 0.05 has faced with—there is no logical reason behind choosing a constant PST. And,

that is probably why none of the proposals has so far gained universal acceptance.

There is a trade-off between the false-positive and false-negative rates—any attempt to

decrease the false-positive rate (e.g., by decreasing the PST) is associated with an increase in

the false-negative rate, which is tantamount to a decrease in the study power [13], the probabil-

ity that a research study will correctly detect an effect when it truly exists.

In a recent article, Habibzadeh has proposed a method to compute the most appropriate

PST [14]. The method proposed is based on the receiver operating characteristic curve analy-

sis. Using the analogy between diagnostic tests with continuous results and statistical inference

tests of hypothesis, the most appropriate PST was computed in the same way as the most

appropriate test cut-off value is calculated [14, 15]. Similar to the most appropriate test cut-off

value, defined as the value where the weighted sum of errors in making a correct diagnosis is a
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minimum [15], the most appropriate PST was defined as the value where the weighted sum of

errors in statistical inference is a minimum [14]. It has been shown that the optimum PST

(PSTopt) is not a fixed value for all studies; it depends on various aspects of the study—its sam-

ple size, the minimum acceptable effect size, and the prior odds of the alternative hypothesis

(H1) relative to the null hypothesis (H0), among other things [14].

In his article, Habibzadeh provided details for a one-tailed Student’s t test, as an example.

Herein, it is meant to generalize the method proposed to a two-tailed statistical inference test

of hypothesis and apply the method to the following hypothetical RCT—a two-arm parallel

design RCT where we want to compare the effectiveness of two treatments in two groups of

participants (100 in one arm and 70 in another) looking for a medium effect size (Cohen’s

d = 0.5) [16]; assuming three ratios between variances of two study groups of 0.5, 1.0, and 2.0;

and a prior odds of H1 relative to H0 of 1.

Herein, the results of using the PST values of 0.05 (the conventional value) [4], 0.005 (the

value proposed by Ioannidis and Benjamin) [10, 11], and the optimum value [14] for the PST

(PSTopt, computed according to the method presented in the current study) to interpret the

results of the hypothetical RCT and also 22 500 real RCTs retrieved from the CDSR are pre-

sented and analyzed.

Materials and methods

The most appropriate p value significance threshold

Assume that a cost function is defined to estimate the total error that could happen in statisti-

cal inference test of hypothesis—type I (α) and type II (β) errors. Type I error can only happen

when H0 is correct (when there is no true effect); type II, when H1 (when there is a true effect).

If pr designates the prior probability of H1, then a candidate for the cost function would be:

ε ¼ pr bþ 1 � prð Þ a ð1Þ

This is quite similar to the situation with the calculation of the number needed to misdiag-

nose for a diagnostic test [17], if the pr represents the probability of the disease of interest; β,

the false-negative rate (1 –Specificity); and α, the false-positive rate (1 –Sensitivity) [14]. How-

ever, most of researchers believe that the seriousness of making a type II error is not as high as

making a type I error. Many scientists, including most of those working in biomedical sci-

ences, assume a maximum acceptable probability of making type I error (α) of 0.05, and a min-

imum acceptable study power (1–β) of 0.8, hence, a maximum acceptable probability of

making a type II error (β) of 0.2. This implies that our tolerance for making type II error is

four times of that making a type I error; in other words, the seriousness of type II error relative

to type I error is generally assumed to be 0.25 [16, 18, 19]. It seems reasonable to also weigh

different types of errors in computing the cost function with a factor reflecting the seriousness

of type II relative to type I error, C. The cost function introduced in Eq 1 can thus be written as

follows [14]:

ε tð Þ ¼ C pr b tð Þ þ 1 � prð Þ a tð Þ ð2Þ

where α and β are the probability of making type I and type II errors, respectively, given the

statistic cut-off value of t; and pr designates the prior probability of H1 (Fig 1) [14]. This is very

similar to what is used for the computation of weighted number needed to misdiagnose for a

diagnostic test [15, 17]. For instance, for a two-tailed Student’s t test (the statistical test to be

used in the current study), we can write [1, 20]:

a tð Þ ¼ 2 F � jtj; nð Þ ð3Þ
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and

b tð Þ ¼ F jtj � d; nð Þ � F � jtj � d; nð Þ ð4Þ

where F is the cumulative distribution function of Student’s t distribution and ν, the degree of

freedom [1, 20]. In the current study, the function pt from base R was used to compute the F
(see S1 File). In Eq 4, δ is the t value corresponding to the minimum acceptable effect size, d

Fig 1. Distribution of Student’s t density functions (i.e., the area under each curve is equal to 1) in a two-tailed statistical inference test of hypothesis. Let

assume that under the null hypothesis (H0), the mean value of the statistic is zero (solid curve) and that under the alternative hypothesis (H1), the mean value is

non-zero (dashed gray curves, the effect size of interest on t scale, δ in Eq 5). Setting a significance threshold for the statistic of interest (the vertical orange lines)

results in two types of errors in the inference—type I error (designated by α), to reject H0 while there is no true effect (the probability of which is equivalent to the

light red-shaded areas); and type II error (designated by β), to retain the H0 while there is a true effect (the probability of which is equivalent to the light blue-

shaded areas).

https://doi.org/10.1371/journal.pone.0305575.g001
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[14]:

d ¼
d s1

seD
ð5Þ

where s1 is the standard deviation of data in the first group and seΔ is the standard error of the

difference of the group means, which is:

seD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1

n1

þ
1

n2

� �s

ð6Þ

where n1 and n2 are sample sizes of the study groups [14, 21, 22], and s2 is the pooled estimate

of the variance and calculated as follows [21]:

s2 ¼
n1 � 1ð Þs2

1
þ n2 � 1ð Þs2

2

n1 þ n2 � 2
ð7Þ

where s2 represents the standard deviation of data in the second group. Eq 5 is just rescaling

the measure of the minimum acceptable effect size in the first study group with the s1 as the

unit of measurement (d), into the effect size in the t distribution scale with seΔ as the unit of

measurement (δ).

In the data set of 22 500 RCTs used in this study, there was no data on s1 and s2. But, there

was data on n1, n2, and seΔ based on which the pooled estimate of the variance (and the stan-

dard deviation, s) could be computed (Eq 6). However, there was no way to compute s1, which

was necessary for the calculation of δ (Eq 5), unless s1 and s2 were assumed to be equal. Then, s
was equal to s1 and s2 (Eq 7) and after combining Eqs 5 and 6, Eq 5 was simplified to:

d ¼
d
ffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

q ð8Þ

Therefore, for analysis of 22 500 RCTs, it was assumed that the study groups had equal vari-

ances. Combining Eqs 3, 4, and 8, Eq 2 will be a function of some constants, C, pr, δ, n1, n2,

and ν, and the variable t. The function optim (using the method L-BFGS-B) from base R was

used to numerically calculate the optimum value for t that minimizes the cost function (Eq 2,

see S1 File).

Selection of randomized clinical trials

The data set used for this study was a subset of more than 400 000 records of RCTs retrieved

from the CDSR. The data set is publicly available from the Open Science Framework [23]. The

criteria used by van Zwet, et al, in their studies [1, 20], were also used in the current study to

filter the data set. Only RCTs on the efficacy of a treatment with a single (either a dichotomous

or continuous) outcome were included. For each study, the primary effect designated by b and

its standard error, se, were retrieved. van Zwet, et al, calculated the z statistic as b/se for studies

with continuous outcomes (e.g., change in blood pressure) and log(b)/se for studies with

dichotomous outcomes (e.g., odds ratio, relative risk, and hazard ratio). They also excluded

RCTs with a z� 20 [1, 20]. In the current study, the number of participants in each treatment

arm, n1 and n2, was also taken into account. Because the number of participants varies widely,

only RCTs with a sample size� 10 were included in the study. Given the low sample size in

some studies, instead of z distribution, in the current study, Student’s t distribution with a

degree of freedom of ν was used for interpretation of the results (see S1 File) [24].
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Statistical analysis

R software version 4.3.2 (R Project for Statistical Computing) was used for data analysis.

Cohen’s κ for binary outcomes, computed with the function kappa2 from the R package irr
[25], was used for assessing the level of agreement between two raters (Methods). The func-

tions pt and optim, both from base R, were used to compute the value of the cumulative dis-

tribution function of Student’s t distribution, and minimize the error function (Eq 2),

respectively. In the current study, a prior odds of H1 relative to H0 of 1 (i.e., a prior probabil-

ity of 50%, which means that before conducting the RCT, the researchers believed that there

was 50% chance that the treatment is truly effective) was assumed for all studies RCTs. This

value was based on what has been proposed by Ioannidis and Benjamin [5, 10]. The serious-

ness of type II error relative to type I error, C, was assumed to be 0.25. It was assumed that

RCTs with a total sample size � 100 were looking for an effect size� 0.5; otherwise, because

conducting underpowered RCTs is unethical (e.g., conducting an RCT with a total sample

size < 100 to detect a small or medium effect), the minimum acceptable effect size was

assumed to be 0.8 [16]. Given the sample size in each arm, ν could then be calculated (n1 +

n2−2). Assuming equal variances in study groups, δ (Eq 8) was then calculated; the optimum

t value (corresponding to the PSTopt) was computed numerically (see S1 File). The probabil-

ity of type I error (α) and type II error (β) was then calculated from Eqs 3 and 4, respectively.

Having β, the study power was calculated (1–β). Most scientists in biomedical sciences agree

upon a maximum acceptable probability of type I error (α) of 0.05; type II error (β), 0.2 [16,

18, 19]. Imposing these constraints on the computed PSTopt gave the constrained-PSTopt

(C-PSTopt).

Ethics

Not applicable: this study was a theoretical study and did not involve any animal or human

beings.

Results

Hypothetical RCT

Assuming equal variance of the two study arms and using Eq 8 for the calculation of δ, the

most appropriate t value for a two-sided Student’s t test for independent groups being used in

the hypothetical RCT is 2.26 (Fig 2). This value corresponds to a PSTopt of 0.025 and a study

power of 83% (Eq 4; the study power = 1–β). The weighted sum of errors in statistical inference

is a minimum for the PSTopt of 0.025; the error is larger for other PST values, including 0.05

and 0.005 (Fig 2). The error for the PST of 0.005 is even higher than that for the conventional

value of 0.05.

If s2, the standard deviation in the second group, is different from s1, for example, s2 / s1 =

1.5, then Eq 5 should be used to compute δ. Calculations will then end in completely different

values; the most appropriate t value for the hypothetical RCT is 2.11; PSTopt, 0.037; and study

power, 69%. For s2 / s1 = 0.5, the values are respectively, 2.48, 0.014, and 92%.

The C-PSTopt values for three effect sizes, three prior odds of H1 relative to H0, and different

sample sizes are presented in Fig 3. Note that in the calculation of the C-PSTopt, it was assumed

that the two study arms have the same sample size and variance. For different combinations of

sample sizes in each group (yet assuming equal variances), the C-PSTopt are far different from

the design with equal sample sizes in each arm (Table 1).
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Fig 2. The amount of weighted error (Eq 2) associated with different values for the Student’s t cut-off value in our

hypothetical randomized clinical trial. The minimum weighted error corresponds to a t value of 2.26 (green line)

corresponding to a p value significance threshold of 0.025. The weighted errors associated with other values including

the conventional p value significance threshold of 0.05 (red line) and 0.005 (blue line) are larger than the minimum

value. In our example, the error associated with the cut-off of 0.005 (blue line) is even larger than that for the cut-off of

0.05 (red line).

https://doi.org/10.1371/journal.pone.0305575.g002
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Fig 3. Variation of the most appropriate p significance threshold after imposing the constraints (α< 0.05 and study power� 0.8),

C-PSTopt, for 3 effect sizes (d), 3 prior odds of H1 relative to H0, and different sample sizes in each group (n). Both study arms were

assumed to have equal sample size and variances. Only results that with an α� 0.05 and a study power� 0.8 are presented (C-PSTopt). Note

that the abscissa has a logarithmic scale. The ordinate is −log(C-PSTopt), i.e., higher values correspond to lower C-PSTopt. The horizontal

dashed gray line corresponds to the conventional p significance threshold of 0.05; dot-dashed, 0.005. For some designs, there is no sample size

that works under the constraints imposed on the α and study power. For instance, it is not possible to discover a difference with a minimum
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Real RCTs

After applying the inclusion/exclusion criteria, 22 500 RCTs were remained for analysis. The

median sample size of the studied RCTs was 82 (range, 10 to 317 400). Taken the conventional

PST of 0.05 into account, 28.5% (n = 6407) of RCTs were significant (Fig 4). After decreasing

the PST to 0.005, 14.2% (n = 3198) still remained significant. The data set had no information

about the s1 and s2. Therefore, it was assumed that variances in two studied groups were equal;

Eq 8 was used to compute δ and the PSTopt, which revealed that 21.8% (n = 4897) of RCTs

were significant (Fig 4). The level of agreement between the latter method and the “p< 0.05”

criterion in classifying an RCT to either “significant” or “not significant” was near perfect

(Cohen’s κ = 0.82). None of the RCTs that had a p� 0.05 (conventionally considered “not sig-

nificant”), was found significant using the PSTopt criterion; all of the 4897 RCTs that were

found significant using the PSTopt, had a p< 0.05. The PSTopt values differed from study to

study; the median PSTopt for significant RCTs was 3.07 (IQR, 1.93 to 3.90) × 10-2. The study

power of significant studies varied from a minimum of 9% to near 100% (median 78%; IQR,

66% to 88%).

Using the C-PSTopt resulted in a situation where only 9.9% (n = 2237) of studied RCTs

became significant (Fig 4). Half of the RCTs that were found significant using the conventional

PST of 0.05, still remained significant if the cut-off decreased to 0.005; 34.9%, if the C-PSTopt

was used. The median C-PSTopt for significant RCTs was 1.91 (IQR, 1.27 to 2.44) × 10-2. The

distribution of the study power of significant studies is presented in Fig 5 (median, 88%; IQR,

84% to 92%). If the maximum acceptable type I error was assumed to be 0.005, only 1.4% of

the studied RCTs were significant.

Discussion

The main concern of a scientist is to discover truth about the world. Scientists generate

hypothesis, conduct research studies, and examine whether the collected data are consistent

with their hypothesis or not. One of the prevailing approaches is using statistical inference

acceptable effect size (d) of 0.5 with a sample size of 100 per study group, if a prior odds of H1 relative to H0 of 0.1 is assumed (the solid green

line).

https://doi.org/10.1371/journal.pone.0305575.g003

Table 1. The optimum p value significance threshold after imposing the constraints (α< 0.05 and study power� 0.8), C-PSTopt, for different combinations of sam-

ple size in each arm (n1 and n2) given that the acceptable effect size� 0.5, probability of 0.5 (pr) that the alternative hypothesis (H1) is correct (odds = 1), and that

the seriousness of type II error is one-fourth that of type I error (C = 0.25).

n1 n2

50 100 200 300 500 1000

50 — — 1.590 1.629 1.667 1.698

100 — 1.719 1.956 2.077 2.200 2.313

200 1.590 1.956 2.434 2.723 3.054 3.401

300 1.629 2.077 2.723 3.153 3.690 4.310

500 1.667 2.200 3.054 3.690 4.574 5.748

1000 1.698 2.313 3.401 4.310 5.748 7.956

It is also assumed that the variances in both groups are equal. Note that the values are–log10(C-PSTopt). For example, for a study with 100 participants in one arm and

500 in another arm (a total of 600 participants), the C-PSTopt is 10−2.2, which is 0.0063 meaning that a p value < 0.0063 should be considered “significant.” The value is

far different from the C-PSTopt for a study with 300 participants in each arm—0.0007 = 10−3.153. Note that for certain conditions, say 50 participants in one arm and 100

in another, it is not possible to design a study to detect a minimum acceptable effect size of 0.5 with the given constraints.

https://doi.org/10.1371/journal.pone.0305575.t001
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Fig 4. Frequency distribution of the significant randomized clinical trials (RCTs) using different p value significance

thresholds (PSTs) criteria. The optimum p value significance threshold (PSTopt) was computed by minimizing Eq 2.

C-PSTopt is the PSTopt after imposing the constraints that a type I error probability of at most 0.05 and a study power of at

least 0.8 are mandatory.

https://doi.org/10.1371/journal.pone.0305575.g004
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tests of hypothesis [22]. The p value, is the most common single statistic used to determine

whether H0 should be rejected or retained. If the calculated p value is less than a set cut-off

value (PST), the observed results are considered surprising enough under H0, the results are

considered “significant” and the H0 is rejected [14].

No reasonable formulation has so far been provided to determine which value of PST is the

best. For instance, Ronald A. Fisher arbitrarily chose a PST of 0.05 in 1925 [4]. This value,

although unfounded, has soon become popular, thereafter. A study conducted on more than

350 000 articles published between 1990 and 2015, retrieved from PubMed Central, reveals

that there are on average nine p values in each studied article [26].

Simulation studies have shown that using the conventional PST of 0.05 results in many

false-positive research results [5, 6]. There is a trade-off between α and β; a decrease in the PST

(α), which corresponds to an increase in the Student’s t significance threshold, increases β, and

vice versa (Fig 1) [27]. Using a lower PST, for instance, by decreasing the PST from 0.05 to

Fig 5. Frequency distribution of the study power of randomized clinical trials that found significant based on the PSTopt method proposed [14]. The

distributions are those before (white columns) and after selecting studies with a type I error probability of at most 0.05 and a study power of at least 0.8

(C-PSTopt, gray columns).

https://doi.org/10.1371/journal.pone.0305575.g005
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0.005 (as proposed by Ioannidis and Benjamin) [10, 11], although is associated with a lower

false-positive rate, is not necessarily associated with a lower weighted sum of type I and type II

errors (Eq 2). As an example, for the hypothetical RCT, the weighted sum of errors for the PST

of 0.005 is even higher than that for the conventional PST of 0.05 (Fig 2). Therefore, choosing

a lower PST does not necessarily improve the situation; false-negative results may occur—i.e.,
H0 is retained while there is a true effect. In this way, we may overlook important therapeutic

effects merely for fear of ending in false-positive results. A fixed PST does not work in all situa-

tions; a flexible PST may do [14].

Assuming the conventional PST of 0.05, about 30% of studied RCTs were found significant.

For studied RCTs, decreasing the cut-off from 0.05 to 0.005, decreased the significance rate to

near 15%. Here again, although the false-positive rate theoretically decreased, there was no

guaranty that this was necessarily better; false-negative results could ensue and potentially

important therapeutic effects might be left undiscovered. Perhaps, only choosing a flexible

PST can optimize the weighted error (Eq 2).

Using PSTopt, about 20% of studied RCTs were found significant, about two-thirds of those

found significant with a conventional PST of 0.05. In fact, the two methods had a near perfect

level of agreement in classifying the studied RCTs to either “significant” or “not significant.”

Although the PSTopt values computed in this way, were< 0.05 for all significant RCTs, the

associated values for the study power varied from a minimum of 9% to near 100% (median

78%; IQR, 66% to 88%). While an α< 0.05 is acceptable by many researchers, a study

power< 80% is not. Many of the RCTs that were found significant using the PSTopt criterion

had unacceptably low power. Under certain circumstances, the methodology may even end

with a PSTopt� 0.05, because there is no constraint on the α and β in the calculation of PSTopt

(it did not happen in the current study).

From a pragmatic point of view, imposing constraints on the α and β seems to be manda-

tory. Traditionally, most researchers in biomedical sciences believe that the maximum accept-

able probability of type I error (α) is 0.05; type II error (β), 0.2, hence a minimum acceptable

study power (1–β) of 0.8 [16, 18, 19]. Imposing these constrains to PSTopt gives the C-PSTopt.

Using the C-PSTopt, almost 10% of the studied RCTs became significant. Almost half of the

RCTs found significant using the PSTopt, were discarded with C-PSTopt criterion for being

under-powered. Employing C-PSTopt, around two-thirds of RCTs that were found conven-

tionally significant (p< 0.05) were considered “not significant.” Other constraints may be

imposed; for example, if the maximum acceptable α was assumed to be 0.005 (instead of 0.05),

only less than 2% of the studied RCTs were found yet significant—seemingly, a too stringent

constraint. Therefore, the choice of constraints applied is of paramount importance.

Optimum p value significance threshold

An inevitable byproduct of using the frequentist statistical inference test of hypothesis is mak-

ing type I and type II errors. Using a flexible PST to minimize the weighted sum of these errors

sounds like a reasonable way to optimally use the method. Use of PSTopt, however, would end

in finding low-powered RCTs “significant.” Imposing constraints on the acceptable levels of

type I and type II errors and using C-PSTopt, would solve this problem. Nonetheless, new prob-

lems surface.

As the calculation of the cost function (Eq 2) is based on Eqs 3 and 4, which in turn depend

on the F, the cumulative distribution function of the statistic of interest (in our example, Stu-

dent’s t distribution), PSTopt should in general be different from statistical test to test, even in a

single study. This makes the situation difficult, even unacceptable by many researchers.
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To correctly compute the PSTopt, it is necessary to use Eq 5 to calculate δ. Assuming that

the variances of the two study groups are equal, reduces the equation to Eq 8. But, it is not

always the case; variances are often different in the two study groups and Eq 8 cannot give a

correct estimation of δ. Thus, the final PSTopt and C-PSTopt would not be accurate, if equal

variances assumption is violated. As an example, the PSTopt values calculated for variance

ratios of 1.5, 1.0, and 0.5 for our hypothetical RCT, were totally different (0.037, 0.025, and

0.014, respectively). As the data set of RCTs did not contain any information on the variance

of the studied groups, in the current study, equal variance assumption was made for analyzing

the RCTs.

To accurately compute the PSTopt, Eq 5 should be used. But, Eq 5 cannot be calculated a pri-
ori because the standard deviations of the two groups will only be available a posteriori, after

the study is completed [14], which brings us into a fundamental problem.

The variances of data measured in two arms are very likely to be different, even for repli-

cates of a single RCT, for the sampling variation, if nothing else [28]. Therefore, the computed

PSTopt (based on Eq 5) for replicates of even a single RCT would be very likely to be different

[14]. Having different PSTopt values, even for a single statistical test, for replicates is not accept-

able at all. This dilemma points to an inherent conflict within the frequentist statistical infer-

ence framework and makes using the idea of using a PST and the p value a total failure.

Using frequentist methods, the confidence intervals, closely associated with the p value, are

also not reliable. Analyzing almost the same RCTs examined in the current study, van Zwet,

et al, show that the 95% confidence intervals reported therein contained the real value of the

statistic of interest in nearly 90% (not the expected 95%) of the time [1].

Switching the gear

Given the current situation, it seems that it is probably the time to ultimately call for abandon-

ing the p value and instead of dichotomizing RCTs’ results into “significant” and “not signifi-

cant” and reducing the entire data set to a one-dimensional summary measure (e.g., p value),

as it is done in the frequentist statistical framework, use another approach (e.g., the Bayesian

methods) and try to revise the likelihood of a hypothesis (e.g., if a treatment is more effective

than another) in light of the new results obtained from RCTs [29, 30].

Bayesian approach is definitely not perfect. It is commonly more computationally intensive,

particularly if the model has numerous variables [14, 29]. However, with the emergence of bet-

ter computers and application of the artificial intelligence units in various aspects of research,

it seems that the time is ripe to switch to Bayesian or other similar methods [31].

Limitations

One of the limitations of this study was to focus on Student’s t test, not other statistical tests.

Student’s t test was examined because it was the only test necessary for data analysis in the cur-

rent research. Another limitation of this study was assuming equal variances in study groups

of the 22 500 RCTs studied. More accurate calculations could not possible for lack of informa-

tion on the variance of each group in the data set used. The assumption of equal variance in

RCTs studied was another limitation. Using a cost function other than that used in the current

study (Eq 2) would end in different results; other researchers may prefer to use another convex

function with other weights. The choice of Eq 2 could thus, be considered another limitation

of this study, but the choice was merely based on the analogy between the diagnostic tests and

statistical inference test of hypothesis [14]. Future studies should focus on the general form of

the problem. Simulation studies should be conducted to examine the changes in false-positive

and false-negative rates with different PST criteria.
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Conclusions

Our medical practice is heavily dependent upon the results of RCTs. A significant finding

would change the treatment of a disease. A false-positive result would deleteriously affect the

health of many people. A false-negative result, on the other hand, would result in deprivation

of many suffering people from an effective new treatment. The best way to correctly interpret

the results of an RCT, using a frequentist approach, is probably using a way to minimize the

weighted sum of errors that may incur in a statistical inference test of hypothesis. The method

proposed in the current study to calculate the most appropriate PST, however, ends in an

inherent conflict in the frequentist statistical framework. To better interpret the results of an

RCT, it seems that another approach, say the Bayesian statistics, needs to be employed. The

methods may be computationally intensive, but given the increasing computational capacity

of the globe and the introduction of artificial intelligence in most research disciplines, it seems

that this is not an important issue to be considered.
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