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Abstract
Single photon emitters are core building blocks of quantum technologies, with established and
emerging applications ranging from quantum computing and communication to metrology and
sensing. Regardless of their nature, quantum emitters universally display fluorescence
intermittency or photoblinking: interaction with the environment can cause the emitters to
undergo quantum jumps between on and off states that correlate with higher and lower
photoemission events, respectively. Understanding and quantifying the mechanism and dynamics
of photoblinking is important for both fundamental and practical reasons. However, the analysis of
blinking time traces is often afflicted by data scarcity. Blinking emitters can photo-bleach and cease
to fluoresce over time scales that are too short for their photodynamics to be captured by
traditional statistical methods. Here, we demonstrate two approaches based on machine learning
that directly address this problem. We present a multi-feature regression algorithm and a genetic
algorithm that allow for the extraction of blinking on/off switching rates with⩾85% accuracy, and
with⩾10× less data and⩾20× higher precision than traditional methods based on statistical
inference. Our algorithms effectively extend the range of surveyable blinking systems and trapping
dynamics to those that would otherwise be considered too short-lived to be investigated. They are
therefore a powerful tool to help gain a better understanding of the physical mechanism of
photoblinking, with practical benefits for applications based on quantum emitters that rely on
either mitigating or harnessing the phenomenon.

1. Introduction

Fluorescence intermittency, also referred to as telegraph noise or blinking, is a phenomenon common to
many photon-emitting (quantum) systems, especially when the linear size of the objects or host materials
reaches the nanoscale. Affected systems include organic molecules and proteins, [1–3] polymers, [4]
quantum dots, [5–7] and a large variety of nanostructured materials [8–14]. Under continuous optical
excitation, these photo-intermittent systems undergo stochastic switching between two or more states, each
corresponding to a distinct recombination/decay path for the excited electrons (and holes) involved (cf
sections 2.1–2). As a result, the emitters display different and characteristic step-like fluorescence intensities
as they transition between on/off states with temporal dynamics generally in the∼ms–s range (figure 1).

Generalized models attempting to capture the origin of photoluminescence intermittency and quantify
the switching rates have been proposed [12, 15, 16]. They mostly revolve around the idea that, upon
excitation, electrons and/or holes become involved in trapping mechanisms with characteristic lifetimes. The
emitter-to-emitter and system-to-system variabilities [7, 14, 17–20] suggest the existence of system-specific
trapping mechanisms that are relevant as they can reveal important information about the nature of the
emitters and their interaction with the local environment. This goes beyond mere fundamental interests:
understanding and quantifying the blinking photodynamics have practical value, for they can lead to either
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Figure 1. Fluorescence intermittency. (a), (b) Schematic representation of the ‘on’ (a) and ‘off ’ (b) states. The on state
corresponds to the emitter continuously cycling between the ground, |g⟩, and excited state, |e⟩, via optical excitation and radiative
decay. The off state corresponds to the emitter ‘losing’ an electron to a relatively long-lived metastable/trap state, |m⟩. (c) Time
trace showing the difference in fluorescence photocounts between the on/bright and the off/dark states. (d) Statistics of the on
and off states’ occurrences.

mitigate its occurrence, [21–25] when undesired, or harness it for applications that rely on it, such as in
stochastic superresolution microscopy [18–20, 26, 27].

Regardless of the strategy chosen for extracting blinking statistics from photoluminescence time traces,
[16, 28, 29] one of the main hurdles any approach faces is data scarcity. The average permanency of blinking
emitters in a given state generally ranges from milliseconds to seconds and can vary from system to system.
Therefore, building up enough statistics to accurately determine their switching rates requires time traces
that are tens to several hundreds of seconds long. The ratio between acquisition time and average state
lifetime should be, at minimum,∼103—realistically,∼104 or even∼105. This can be problematic, for in
many cases blinking emitters can undergo photo-bleaching at shorter time scales [30, 31]. Here, we
demonstrate two approaches based on machine learning (ML) that address directly this problem and allow
for the extraction of blinking rates with at least an order of magnitude less data and higher precision than
traditional methods based, e.g. on statistical inference. These ML methods thus expand the range of
surveyable blinking systems to those that are relatively short-lived—potentially revealing trapping dynamics
that would otherwise be impossible to capture due to insufficient statistics of switching events. To showcase
their accuracy, efficiency and precision, we employ these ML strategies to characterize the switching rates of
emulated blinking emitters and we compare them to traditional statistical methods. When relevant, we
discuss how these ML algorithms can be generalized to characterize more complex dynamics and
systems—potentially beyond photoblinking emitters.

2. Theoretical framework

The methods we propose, their analysis and benchmarking against other approaches are based on a series of
hypotheses and assumptions that we detail below.

2.1. On/off states and (generalized) quantum jumpmodel
In this work, our framework for describing the blinking mechanism is the quantum jump model [31].
Blinking emitters are effectively treated as generalized three-level systems that perform stochastic jumps
between an on/bright and an off/dark state, respectively characterized by a high and low recorded intensity in
the photoluminescence time trace (figure 1). In the simplest version of this model, under continuous optical
illumination an electron in the system undergoes consecutive excitation and radiative recombination cycles
between the ground, |g⟩, and excited level, |e⟩. The system is said to be in the on/bright state, [|g⟩⇆|e⟩]on,
and displays a high number of fluorescence photocounts. From the on state the system can transition, with
rate kon, to the off/dark state, [|m⟩]off. This can be a metastable state, e.g. an acceptor-like state originating
from surface or local reconstruction of the crystalline structure surrounding the emitter. In the off state,
photoemission ceases until the electron relaxes non-radiatively and transitions back, with an overall rate koff,
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to the on state, resuming the photoemission cycle. Note that the time scales of the radiative recombination
and trapping/non-radiative recombination mechanism(s) can be vastly different:∼10–9–10–7 s for the
radiative relaxation of the electron in the on state, |g⟩⇆ |e⟩, vs.∼10–3–10◦ s for the trapping/non-radiative
recombination process, [|g⟩⇆|e⟩]on ⇆ [|m⟩]off. Specific systems can display more complex dynamics (both
for the on and off states), for instance in the case of trapping mechanisms involving multiple recombination
channels each with its individual—potentially varying over time—trapping/recombination rate [15]. For
these, the simple quantum jump model can be generalized by defining a total non-radiative recombination
rate, kt (t), that accounts for all trapping mechanisms:

kt (t) =
J∑

j=0

kjσj (t) . (1)

The terms σj (t)‘s are such that σj = 1 when the corresponding jth trapping channel is active and σj = 0
when it is inactive. Equation (1) is general and can describe systems of different dynamics (cf sections 2.2 and
2.3) as the active-to-passive, σj (t) = 1→ 0, and passive-to-active, σj (t) = 0→ 1, distributions can be
functions varying with time with switching rates γ−

j and γ+
j , respectively. The quantity k0 is the background

rate and is always active (σ0 = 1), even when any other trapping channel is inactive. Under the hypotheses
that the electronic excitations and radiative recombinations of rates kI and kr, respectively, are much faster
than the trapping rates kj, i.e. kI, kr ≫ kj ∀j, the steady-state expression for the photoluminescence intensity
of a blinking emitter can be written as

I(t) =
kI

kI + kr + kt (t)
(2)

which captures the photoluminescence jumps observed for blinking emitters. In fact, when every trapping
mechanism is inactive, kt (t) = 0, the intensity I(t) is maximum (dependent simply on the excitation and
radiative rates kI and kr), while it lowers when kt (t) ̸= 0 (i.e. when at least one trapping channel is active).
Additionally, with respect to an arbitrary threshold separating the on and off states such that the emitter is on
when I(t)> Ith and off when I(t)< Ith, we can express the on/off condition with respect to a threshold rate
kth. Specifically, if kt (t)⩽ kth, the emitter is on, and otherwise it is off.

As a final note, while it is generally true that trapping processes are much slower (up to a few orders of
magnitude) than electronic transitions (kI, kr ≫ kj ∀j), rapid trapping events can occur, indicating that
individual systems can display a vast range of diverse and complex dynamics deviating from the simplest of
models [18].

2.2. Analytical form of the on/off distributions
The distribution of the on and off events in blinking emitters is, generally, system-dependent (and in some
cases also emitter-dependent). Blinking emitters are therefore usually organized in two main categories [32]:
i) systems for which the distribution of the on and off times is exponential or near exponential,
P
(
τon/off

)
∝ e−t/τon/off and ii) systems for which the distribution of the blinking events follows an inverse

power law, P(τon/off)∝ τ−mon/off

on/off . The first category includes, e.g. single molecules, [1, 33] polymers [4] and
quantum emitters in solid-state hosts, [13, 14] while the second includes mainly quantum dots [15, 28, 34].
This warrants a couple of observations. We note, firstly, that this classification is not absolute as any of these
systems can deviate from the ‘nominal’ behavior—indicating that the trapping mechanisms at play for a
given blinking emitter can be very nuanced and highly dependent on its local environment. We remark, also,
that mathematically the dynamics for both systems of type (i) and (ii) are captured by the general
equation (1), once the number of trapping mechanism(s), as well as their rates and time distributions are set.
Broadly speaking, the probability density of the on/off time occurrences following an exponential decay is
indicative of a single trapping mechanism with individual on and off dynamics characterized by
corresponding average lifetimes ⟨τon⟩= ⟨1/kon⟩ and ⟨τoff⟩= ⟨1/koff⟩, respectively. Conversely, an inverse
power law is indicative of a distribution of trapping dynamics consisting of either a) an individual trapping
mechanism that undergoes fluctuations over time and thus displays a distribution of on/off rates or b) a large
set of co-existing trapping mechanisms each with its own rate. A combination of scenarios (a) and (b) is also
possible and is captured, again, by the general equation (1). Note that a set of exponential
distributions—either discrete but sufficiently dense and weighted, or nearly-continuous—can reproduce the
inverse power law behavior. Detailed analyses involving changes in the binning times can reveal the
multi-exponential vs. inverse power law distribution of P(τon/off), as ⟨τon/off⟩ is respectively independent of
the integration window for the former, and dependent for the latter [31].
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Figure 2. Time traces and statistics for real and synthetic blinking emitters. (a), (b) Experimental time trace measured for a
blinking nitrogen-vacancy (NV) center in a 5-nm nanodiamond host (a), and simulated time trace for a synthetic blinking center
(b). (c)–(f) Histograms of the ‘on’-state (c, e) and ‘off ’-state (d, f) average lifetimes for the real and synthetic blinking emitter,
respectively. The time constants measured for the real NV center are ⟨τon⟩= 4.8 ms (c) and ⟨τoff⟩= 6.7 ms (e). These values are
used to create the synthetic data in (b) that, in turn, produces the synthetic ‘on’- and ‘off ’-state histograms (d) and (f),
counterpart to the respective histograms (c) and (e) of the real NV emitter. Inset in (c): second-order autocorrelation function,
g(2) (t), showing that the emitter is a single photon source, g(2) (0)< 0.5.

2.3. Synthetic data
To demonstrate the accuracy, efficiency and precision in extracting the on/off rates of blinking emitters for
the ML methods we hereby propose, we use synthetic data that is generated computationally. This allows us
to specify—arbitrarily—the on and off transition rates of the blinking emitters and their corresponding
probability densities P(τon) and P(τoff). It also allows us to fully control other (simulated) experimental
parameters such as total duration, thresholds and signal-to-noise ratio of the data. Since the emulated
blinking systems are known with absolute certainty, we can use the synthetic fluorescence data to benchmark
the performance of our methods against those based on traditional statistical inference, e.g.
Levenberg–Marquardt (L–M) or damped least-squares fit of P(τon/off) [35, 36].

We make two hypotheses for the purpose of our demonstrations.
Hypothesis I: we emulate blinking emitters with on and off states characterized by survival, Non/off (τ),

and switching probabilities, N̄on/off (τ), respectively given by:

Non/off (τ) = e−τ/τon/off (3)

N̄on/off (τ) = 1− e−τ/τon/off (4)

where τon/off is the average lifetime of the state. Note that equations (3) and (4) imply the following. The
quantity Non/off (τ) = e−τ/τon/off is effectively the probability that an emitter starting in the on/off state
remains in the same on/off state over time. The probability density P(τon/off) is thus obtained from the time
derivative of Non/off, i.e. P(τon/off) =−dNon/off/dτ =−(1/τon/off)e−τ/τon/off . The probability of a state to
remain populated is independent of the other state. Each transition from one state to another begins a new
Poisson process with the same per-state probability distribution P(τon/off); that is, the rate of transition, and
thus the average lifetime of the state, is independent of the total age of the state and the order of the
activation. Once the system has changed state it ‘forgets’ everything about the previous state.

Hypothesis II: for simplicity, the on and off states in the emulated photoluminescence time traces are well
separated. There is no overlap between the noise of the on and off photocounts—hence a threshold
separating the states can be established unambiguously. Figure 2 shows an example of real data (figure 2(a))
that is directly comparable with an equivalent synthetic set of blinking data emulated computationally
(figure 2(b)). The experimental data in figure 2(a) was collected, at room temperature, from a single NV
center hosted in a detonation nanodiamond (average size∼5 nm). The photoluminescence data is plotted
with a time bin width of 1 ms and was collected with a lab-built confocal microscope. Details of the
experimental measurement and of the sample can be found elsewhwhere [13].

When appropriate, the applicability of our ML methods to cases beyond the quantum jump framework
set by hypotheses I and II are presented in the relevant, specific subsections (cf sections 3.1 and 3.2).
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3. Results and discussion

Within the framework we established, characterization of the photoluminescence intermittency of an emitter
can be achieved through determination of its on- and off-time probability densities, P(τon) and P(τoff).
Experimentally, this consists in recording from the fluorescence time trace a histogram of occurrences for
various time durations (time bins)—i.e. by tallying the frequency with which the blinking emitter is
consecutively measured in the on and off states for each time duration (figures 2(c)–(f)). Under hypothesis I,
the blinking photokinetics in the synthetic data (cf section 2.3) is governed by one rate constant for the on
state and one for the off state, following decaying exponential probability densities P(τon) and P(τoff) from
equations (3) and (4) (note that the measured P(τon) and P(τoff) are not continuous functions due to the
discrete nature of the sampling bin size). Traditional statistical inference methods thus extract the parameters
of interest, specifically the average rates at which the emitter switches between states ⟨kon⟩= ⟨1/τon⟩ and
⟨koff⟩= ⟨1/τoff⟩, by fitting the probability densities to P(τon/off) = y0,on/off +Aon/off · e−t/τon/off , through
standard least square curve fitting (e.g. Levenberg–Marquardt). We note that one of the main issues with this
traditional approach is that the density of data recorded—especially for the long-time bins—is usually low.
This requires acquiring long fluorescence time traces (∼several tens–hundreds of seconds) to capture enough
statistics to populate the long-time bins of the histogram and fit the data to the (exponential) model. In the
following subsections we show how the ML algorithms we developed can overcome this limitation.

3.1. Multi-feature regression (MFR)
The first ML approach we present to tackle the data-scarcity problem is a simple MFR algorithm. Instead of
considering τon and τoff as parameters to be extracted from data fitted to (exponential) models, we define
them as functions that depend on several variables or features. Specifically,

τon/off, i (1,xi1, xi2, . . . ,xin) =
n∑

j=0

wijxij = wi0 +wi1xi1 +wi2xi2 + . . .+winxin. (5)

Which is a generalization of the slope-intercept linear regression for n features. The time constants τon ,i

and τoff,i are therefore (weighted) linear combinations of n features: xi = [1, xi1,xi2, . . . ,xin]. The quantity n is
simply the total number of time-bins in the histogram of occurrences, xij is the number of occurrences
recorded for the jth time-bin and wij is the corresponding weight (the term xi0 = 1 with weight wi0 accounts
for the bias or intercept value of the regression). Note that the MFR algorithm is a supervised learning
algorithm that requires training with known sets of data. Specifically, the MFR algorithm is given a certain
number of labeled points, or training set(s), (xi,yi)i, where xi are the time-bin occurrences for the ith data set
and yi is the corresponding label, i.e. the value of the observable of interest, τon/off, i, in our case (the index
i = 1, 2, . . . , N runs over the total number N of data sets). For the training sets, both the features xi‘s and the
corresponding labels yi‘s are known. The MFR algorithm uses this information to infer a labeling rule xi → yi
that can then be used to determine the value of a label yi (i.e. τon/off,i) from an unknown set of features xi
(i.e. occurrences in time-bins) different from the data sets the algorithm was trained on. In our MFR
algorithm, determining the labeling rule simply consists in finding the values of the weight coefficients
wi = [wi0, wi1, . . . ,win] that—for the given training sets—minimize a defined cost function. For our
demonstration, we use a standard least squares error (LSE) cost function, or L2-norm loss function, though
other cost functions are possible:

LSE=
N∑

i=1

(wixi − τi)
2
. (6)

Here the subscript i cycles through the different data sets we use for training the algorithm
(i = 1, 2, . . . , N) and τon/off,i are the target values of the on/off time constants and are known exactly for the
N sets of training data. We recall that to train our algorithm, but also to test it and compare it to traditional
statistical methods, we use synthetic data sets that we emulate computationally and are thus known with
absolute accuracy (cf 2.3).

We find that the MFR algorithm manifestly outperforms standard statistical inference methods. In our
demonstration, we generate several sets of synthetic fluorescence intermittency time traces. Specifically, we
produce synthetic time traces with ⟨τon⟩= 15 ms and ⟨τoff⟩= 45 ms and time bin 1 ms, chosen arbitrarily.
From the fluorescent time traces, we then build the histograms of on and off occurrences per time bin that
give the corresponding (discrete) probability densities P(τon) and P(τoff). The values of ⟨τon⟩ and ⟨τoff⟩ are
extracted using both a Levenberg–Marquardt (L–M) fit of P(τon) and P(τoff) and the MFR algorithm (which
had been previously trained with just 20 training sets of synthetic data). The extracted values of ⟨τon⟩ and
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Figure 3. Performance comparison of the various models. (a), (b) Nominal value (black, dashed line) of the simulated
⟨τon⟩= 15 ms (a) and ⟨τoff⟩= 45 ms (b) with the corresponding values and uncertainties predicted by a standard L–M fit (orange
diamonds and shading), and by the MFR model (light blue stars and shading) and GA model (red circles and shading). Note how
both the MFR and GA models can predict the correct values for ⟨τon⟩ and ⟨τoff⟩ with comparatively fewer data points (i.e. shorter
time traces) than a standard L–M fit and with a smaller uncertainty.( c), (d) Heatmap showing the achieved precision (standard
deviation from the nominal values of ⟨τon⟩= 15 ms (a) and ⟨τoff⟩= 45 ms) for the various models as a function of duration of
the time trace (0.2–1·103 s or 200–1·106 data points). Lighter colors indicate higher precisions, i.e. smaller errors (also shown
numerically in the heatmap); if the numeric value is not shown it indicates that the model was not able to converge to a value of
⟨τon⟩ or ⟨τoff⟩ due to data scarcity. Note how the MFR and GA algorithm outperform the standard L–M fit both in terms of
accuracy and precision, as well as a smaller amount of data required to converge. Note: the accuracy and precision of each method,
L–M, MFR and GA, are estimated from 100 samples of simulated time traces all with ⟨τon⟩= 15 ms (a) and ⟨τoff⟩= 45 ms.

⟨τoff⟩ are then compared to the actual values of 15 ms and 45 ms respectively, to establish the accuracy of
each approach. Notably, for the same level of accuracy, the MFR algorithm can determine the values of τon/off
with a⩾10× factor fewer data points than the L–Mmethod. This means that we can extract the same level of
information from fluorescence time traces that are tenfold shorter in duration (figures 3(a) and (b)).
Specifically, after training the MFR algorithm with just 20 emulated training sets the model can predict the
correct value for ⟨τon⟩ and ⟨τoff⟩ with⩾85% accuracy from a time trace as short as∼0.2 s (i.e. 200 data
points) and∼2 s (i.e. 2·103 data points), respectively. Note that in the case considered here, ⟨τon⟩ is three
times shorter than ⟨τoff⟩, which results in both the L–M fit and the MFR algorithm reaching the same level of
accuracy with a shorter time trace (i.e. fewer data points) for ⟨τon⟩ than for ⟨τoff⟩. The same level of accuracy
can be achieved through traditional statistical inference (L–M) methods with much longer acquisition times,
∼20–200 s (i.e. 2·104–2·105 data points). In fact, traditional least square curve fitting methods are incapable
of converging at all with a time trace as short as 2 s (2·103 data points) or less, and if they do, the value of
⟨τon/off⟩ is only known with an accuracy of∼10% (i.e. with∼90% uncertainty). Note that the minimum total
acquisition time Tmin (equivalent to the minimum number of data points, Dmin) required to determine
⟨τon/off⟩ depends on ⟨τon/off⟩ itself—the longer ⟨τon/off⟩ is, the longer Tmin becomes. We can therefore define
the ratio r= Tmin/⟨τon/off⟩ and use this figure of merit to directly compare each method. In our analysis, the
L–M fit requires a factor⩾10× longer minimum acquisition time Tmin than the MFR algorithm, therefore
rL−M/rMFR

∼= 10. In fact, for ⟨τon⟩= 15 ms the difference in performance is even more evident as
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Table 1. Performance summary of the Levenberg–Marquardt (L–M), multi-feature regression (MFR) and genetic algorithm (GA)
methods. The quantities Tmin and Dmin represent the minimum acquisition time (Tmin) and data points (Dmin) required to determine
⟨τon/off⟩ with an accuracy⩾ 85%. The ratio r= Tmin/⟨τ⟩ is the minimum total acquisition time Tmin relative to the average on/off
duration ⟨τon/off⟩ and allows for direct benchmarking of the MFR (using r∗ = rMFR) and GA (using r∗ = rGA) method, against the L–M
fit (rL−M). In the rightmost column, we indicate whether or not the method works independently of the analytical form (i.e.
exponential, power-law, etc.) of the probability distributions P(τon/off).

Tmin (s) Dmin (points) r= Tmin/⟨τ⟩ rL−M/r∗ P(τon/off)
independent⟨τon⟩ ⟨τoff⟩ ⟨τon⟩ ⟨τoff⟩ ⟨τon⟩ ⟨τoff⟩ ⟨τon⟩ ⟨τoff⟩

L–M 5 5 5000 5000 333 111 1 1 No
MFR 0.2 1 200 1000 13.3 22.2 25 5 Yes
GA 0.5 0.5 500 500 33.3 11.1 10 10 No

rL−M/rMFR
∼= 25 (see also table 1). Note that the ratio r is a-dimensional so it can be expressed, equivalently

in terms of number of data points (r= Dmin/⟨don/off⟩).
These results are highlighted in figures 3(a) and (b) where the accuracy (measured as the distance

between the predicted and the true value) and the corresponding precision (measured as the standard
deviation or error of the predicted values) are displayed for ⟨τon⟩ (figure 3(a)) and ⟨τoff⟩ (figure 3(b)). To
note is that, compared to the traditional L–M fit, the MFR algorithm predicts values of ⟨τon⟩ and ⟨τoff⟩ that
are both more accurate—the markers are closer to the dashed lines corresponding to ⟨τon⟩= 15 ms and
⟨τoff⟩= 45 ms—and also more precise—the shaded area around the predicted values is smaller. Additionally,
as already noted above, the MFR algorithm can predict values of ⟨τon⟩ and ⟨τoff⟩more efficiently, i.e. with
comparatively fewer data points. Similarly, the heatmaps in figures 3(c) and (d) offer a visual summary of the
higher precision—indicated by smaller numeric error values and by lighter colors—of the MFR and genetic
algorithm (GA, cf section 3.2 below) compared to a standard L–M fit. Note that, in the heatmaps, dark
shaded cells with no numeric value indicate that there were not enough data points for the algorithm to
determine a value of ⟨τon⟩ and ⟨τoff⟩; again, the better performance of the MFR and GA algorithms over the
standard L–M fit is evident.

It is also worth underscoring that the MFR algorithm is relatively fast, the whole training and testing
process can take between seconds and few tens of seconds (for time traces containing as few as 200 or as
many as 106 data points, respectively).

These results and specifically the difference in performance of the MFR algorithm vs. that of a traditional
L–M fit call for a few important observations. Above all, both ML and traditional inference-based methods
utilize statistical analysis to make determinations from available data. However, they do so differently, even
though the difference is conceptual rather than fundamental. Traditional inference-based approaches rely on
a proposed model of unknown parameters that are determined using statistical tools from fitting complete
data sets. The term ‘complete’ indicates explicitly that the available data ought to be large enough to be fitted
by the model within a target level of accuracy. Conversely, ML utilizes general-purpose learning methods that
do not rely on an explicit model for the distribution of the data and make predictions in response to
identifying patterns—often from sparse data sets. The term ‘sparse’ indicates that while a single data set
might not be large enough to be fitted via a traditional approach, e.g. L–M, many sparse data sets can display
enough pattern repetition to allow ML algorithms to correlate the data to specific outcomes. This conceptual
difference is sometimes embodied by the expressions long data (relevant to inferential statistics) vs. wide data
(relevant to ML) [37].

Within this context, we ascribe the efficiency of the MFR algorithm to extract emitters’ blinking rates to a
few key factors. In general—and commonly to many supervised ML strategies—ML algorithms can build
strong data-to-outcomes correlations from training data sets of known, previously-acquired data. This
usually comes at a high overhead cost: the actual availability of said (wide) data, i.e. of large sets of
experimental observations to train the algorithm with. In our case, however, this initial cost is negligible. We
use synthetic data from emulated blinking emitters to train our MFR algorithm, which means we can train
the algorithm with an arbitrarily large number of data sets. This is possible because we can describe any
blinking system from its rate equations with an arbitrary level of control on every parameter: from rate
constants and number of trapping mechanisms to noise level and total durations of the fluorescence time
traces. This way of ‘acquiring’ the training sets is noteworthy as it directly overcomes the requirement of
gathering, upfront, large sets of experimental training data. It also underscores the vast potential of hybrid
approaches [38] where both ML and knowledge-driven modeling are combined to achieve high optimization
efficiencies [39]. It however also calls for caution as the MFR algorithm will perform reliably for data within
the training parameter space, but might not be generalizable to data outside of it. Nevertheless, traditional
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L–M fitting approaches rely themselves on pre-assumed models that could be too simple or inaccurate,
making that of generalization a problem that is not just one of ML approaches alone.

One of the more specific reasons the MFR algorithm performs better than a standard L–M fit is that it is
less reliant on low density of data, especially in the long-time bins of the histogram of occurrences. Having
potentially different weights wij for different time bins xij in the MFR algorithm directly mitigates the
data-scarcity problem, as each bin can be weighted more/less. Notably, this has been shown to be
advantageous for other types of vastly different systems and measurements that utilize a similar ML base
multi-regression approach—indicating that it is a core trait of the approach [40].

As a final note, it is worth emphasizing the generality of the MFR algorithm well beyond the framework
we set (cf sections 2.1–3 and hypotheses I and II). With reference to hypothesis I, we remark that the MFR
algorithm is entirely independent of the probability distributions P(τon/off). Equations (5) and (6) are general
and do not rely on a specific analytical expression for P(τon/off)—it be exponential, described by an inverse
power law or any combination of these. This follows, again, from a trait common to many ML strategies,
namely the use of general-purpose learning methods that do not rely on an explicit model. Additionally, with
reference to hypothesis II, the method can be applied to strategies that do not require the separation of the
on and off states by a threshold, including for instance those based on the analysis of the power spectral
density (PSD) of fluorescence time traces [15, 29]. In fact—whilst requiring to be adapted to specific
cases—the MFR algorithm is universally applicable, only requiring for the measured signal to be discretizable
and the discrete bins to have relative intensities that correlate to specific values of an observable of interest.

3.2. Genetic algorithm (GA)
To tackle the problem of data scarcity of blinking emitters, we also develop and implement a GA. Genetic
algorithms are a class of unsupervised optimizers that are particularly apt at solving combinatorial
optimization and search problems [41, 42]. They are rooted on the idea of generating solutions from an
initial pool of guesses that are progressively improved and selected out through evolution-inspired strategies.
Operatively, GAs rank individuals (i.e. prototype solutions) from a population, based on a fitness function that
measures how well each individual solves the target problem. From the current generation of solutions, the
fittest individuals—i.e. the best-performing solutions—are then subjected to crossover andmutation to
spawn the next generation of individuals. Briefly, the crossover process takes two (sometimes more)
well-performing solutions (parents)—as determined by the fitness function—and mixes the values of their
parameters to produce a new solution (child). Conversely, mutation takes a solution and randomly changes
some of its parameters to create a new one (mutant); the goal is to allow the algorithm to explore a wider
region of the solution space and avoid converging prematurely to local—rather than global—optima. The
processes of fitness evaluation and breeding continue through multiple generations until a desired level of
accuracy is reached and the fittest individual (solution) is selected.

In our implementation, we start from a single time trace with values of τon and τoff to be determined.
From the time trace, the two histograms of the on and off occurrences are extracted as per usual
(figures 2(c)–(f)) and analyzed separately. From each histogram individuals are created. An individual is,
simply, a random subset of the histogram data containing (time-bin, occurrences) pairs. These individuals
constitute the starting generation. It is worth emphasizing that our GA is unsupervised which means that it
runs without requiring a set of known training data (unlike the MFR algorithm of section 3.1); our only
input is the time trace of unknown dynamics, which we assume exhibits switching probabilities that follow
exponential distributions (cf section 2.3, hypothesis I).

From this starting generation the selection process begins. Each individual is ranked through a fitness
function and directly compared to the others and to the conditions for algorithm termination. In our case,
the ranking of the individuals is carried out using silhouette scoring, [43] applied to K-means++ clustering
[44]. K-means++ takes the (time-bin, occurrences) pairs of an individual and organizes them in k
clusters/groups, each identified by its center point, or centroid. The pairs are assigned using Euclidean
distance to the closest centroid such that the sum of the squared distance between each point and the
centroid is minimized. Briefly, this corresponds to minimizing the potential function:

ϕ =
∑
x ∈ χ

min
c ∈ C

∥x− c∥2 (7)

for k centers C= {c1, c2, . . . , ck} and n data points χ = {x1, x2, . . . , xn} where, again, each data point xi is a
(time-bin, occurrences) pair in our case. Since we want to rank individuals against each other we also need a
metric to evaluate this clustering. The silhouette value is a convenient choice for this, as it measures how
similar each object—i.e. each (time-bin, occurrences) pair—is to the cluster it has been assigned to,
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compared to the other clusters. The silhouette score, s(i), is a numeric value that ranges from−1 to+1,
where a value close to+1 indicates that the object is well matched to its own cluster and poorly matched to
neighboring clusters. Specifically, for the ith data point we define the silhouette score as [43]:

s(i) =


1− a(i)/b(i) , if a(i)< b(i)
0, if a(i) = b(i)
b(i)/a(i)− 1, if a(i)> b(i)

(8)

where a(i) is the mean distance (e.g. Euclidean distance) between the ith data point and all other data points
in the same cluster, and b(i) is the smallest mean distance of the ith point to all points in any other cluster
(i.e. in any cluster which the ith point does not belong to).

At the outset, the user defines a strict range for ⟨τon/off⟩ (e.g. 1–100 ms). Following the loading of the data
set, a heuristic estimate for ⟨τon/off⟩ is derived based on: (i) the total observation time of the system, (ii) the
longest observed event, (iii) the event with the highest frequency and (iv) the user-defined range. This
heuristic helps constrain the solution space to a likely range around the initial estimate. The algorithm
executes clustering on the (time-bin, occurrences) pairs of each individual employing a strategy based on
K-Means++ (Smartcore Crate [45]), iteratively refining the clustering of groups of randomly sampled points
until reaching a predetermined threshold. This threshold indicates that, on iteration, the number of points
that undergo cluster reassignment and point movement within clusters adhere to defined tolerances. Fitness
is always evaluated in pairs between two groups of k clusters. The group with the highest silhouette score is
retained, and the other is dropped. If neither score exceeds the threshold, the top scorer is autonomously
replicated (it is cloned, and the clones randomly exchange points), resulting in two offspring that
subsequently undergo mutation. Mutations help traverse the solution space, which is particularly useful
when ⟨τon/off⟩ lacks data representation. Increased mutation rates may assist convergence in such scenarios.
After mutation the fitness function re-clusters each offspring, initiating the process anew. Should one or both
scores exceed the threshold silhouette score the process terminates, returning the most tightly grouped
cluster from the top scorer.

Note that, initially, the user estimates the optimal number of clusters, k, for the K-means++ algorithm. If
the initial clustering does not meet the required level of clustering, the algorithm incrementally adjusts the
cluster count until suitable clustering is achieved. The cluster count remains fixed for subsequent evaluations,
except after substandard clustering attempts. This is one form of elitism, which we leverage in multiple
ways—there is also a penalty incurred once a solution has been accepted, based on the distance of the current
estimation from previous estimations. The different forms of elitism allow for favorable traits of ‘good’
solutions to influence subsequent generations without the need for explicit genetic transfer.

The decay parameter τon/off is then determined as:

τon/off =
DM

ln(2) · [ln(Cmax)− ln(CM)]
(9)

whereM is the median point of a ‘winning’ cluster; DM is the duration of the median point; CM is the
occurrence count of the median point; Cmax is the occurrence count of the point with maximum duration.
The ln(2) accounts for the difference between the median and mean in the exponential decay function.
Equation (9) and the formulation of the genetic algorithm presented here therefore hold under the validity of
hypothesis I, i.e. that the probability distributions P(τon/off) are exponential.

The algorithm runs until the rolling estimate stabilizes (using a window of antecedent estimates for
reference), or a maximum number of iterations is reached. Whereas convergence yields the final estimate,
reaching the maximum iteration count triggers a weighted blend of the final estimate with the mean, mode,
and median of all previous estimates.

To test the performance of our GA, we use the synthetic data with ⟨τon⟩= 15 ms and ⟨τoff⟩= 45 ms as we
did for the MFR algorithm and the traditional L–M fit. The results are shown in figure 3. Similar to the case
of the MFR algorithm, our GA is able to determine the values of ⟨τon/off⟩ with⩾85% accuracy using a⩾10×
factor fewer data points than the L–M method. Notably, the GA is also able to predict ⟨τon/off⟩ with
consistently better precision (by a factor⩾20–40×)—even compared to the MFR algorithm. This is
indicated by the small shading (i.e. smaller uncertainty) in the prediction graphs (figures 3(a) and (b)), and
it is also highlighted in the heatmap data (figures 3(c) and (d)).

We remark that GAs and traditional optimization methods vary significantly in their approaches. GAs
strike a balance between exploring new areas of the solution space and exploiting the properties of the local
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solution space, making them effective in addressing problems characterized by discrete or nonlinear
constraints, or those that exhibit discontinuities. A notable benefit of GAs is their capacity to operate without
relying on derivatives or assuming differentiability, distinguishing them from most traditional optimization
methods. Another prominent characteristic of GAs is their robustness against variations in initial conditions
and data. Traditional optimization methods can be highly sensitive to these fluctuations, which may lead to
suboptimal results—especially in problems like the one addressed in this work where data is scarce. These
features are the main reasons why our GA algorithm is able to significantly outperform a standard L–M
fitting method, since the latter suffers greatly when trying to extract the fitting parameters from low
frequency events (e.g. low occurrences in the long-time bins).

However, it is crucial to underscore that GAs are computationally expensive. Due to their dependence on
population-based search strategies, GAs necessitate an appreciable number of function calls for fitness
evaluation and genetic operations. This computational overhead can be limiting, especially when dealing
with objective functions that are already computationally intensive. Our implementation can be
resource-hungry when working with ‘long’ observation times (≳30 s), and the time-to-convergence
increases significantly (e.g. from∼5 min for a time trace of 2 s to∼45 min for a time trace of 50 s).

4. Conclusion

To conclude, we have proposed two approaches based on ML to characterize quantitatively the
photodynamics of blinking emitters. The two approaches are a MFR algorithm and a GA. Through the
employment of synthetic, emulated data, we demonstrate that the algorithms can extract the switching rates
of blinking emitters with an accuracy⩾85%, and with⩾10× less data and⩾20× higher precision than
traditional statistical inference methods such as LM fitting. As a result, our algorithms effectively extend the
range of surveyable blinking and trapping dynamics to include those that would be otherwise beyond
investigation due to data scarcity. This has potential positive ramifications towards both gaining a better
understanding of photoblinking, and devising ad-hoc strategies to either mitigate or harness the
phenomenon in applications based on quantum emitters.
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