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Abstract: The sintering of iron ammonia synthesis catalysts (nanocrystalline iron promoted with:
Al2O3, CaO and K2O) was studied under a hydrogen atmosphere, in a temperature range of 773 to
973 K to obtain stationary states. The catalysts were characterized by measuring the nitriding
reaction rate under an ammonia atmosphere at 748 K to obtain steady states and the measurement of
specific surface area. Chemical processes were conducted in a tubular differential reactor enabling
thermogravimetric measurements and the chemical composition analysis of a gas phase under
conditions allowing experiments to be carried out in the kinetic region of chemical reactions. An
extended model of the active surface of the iron ammonia synthesis catalyst was presented, taking
into account the influence of the gas phase composition and process temperature. The surface of
iron nanocrystallites was wetted using promoters in an exothermic process associated with the
formation of the surface Fes-O- bond and the change in the surface energy of iron nanocrystallites.
Promoters formed on the surface of iron nanocrystallites with different structures of chemisorbed
dipoles, depending on the composition of the gas phase. The occupied sites stabilized the structure,
and the free sites were active sites in the process of adsorption of chemical reagents and in sintering.
Based on the bonding energy of the promoter oxides and the difference in surface energy between the
covered and uncovered surfaces, the wetting abilities of promoters, which can be arranged according
to the order K2O > Fe3O4 > Al2O3 > CaO, were estimated. By increasing the temperature in the
endothermic sintering process, the degree of surface coverage with dipoles of promoters decreased,
and thus the catalyst underwent sintering. The size distribution of nanocrystallites did not change
with decreasing temperature. Only the equilibrium between the glass phase and the surface of iron
nanocrystallites was then established.

Keywords: nanocrystalline iron; sintering; iron ammonia synthesis catalyst; thermodynamics

1. Introduction

Despite the expectation that nanocrystalline materials will be widely used because of
their unique properties compared to coarsely crystalline materials, the use of the former is
limited because it is believed that the structure of nanomaterials with a developed surface is
unstable at elevated temperatures [1–6]. The theoretical foundations regarding the growth
kinetics of nanocrystallites in the sintering process were presented about 70 years ago by
Smith [7], Burke [8] and Burke and Turnbull [9].

The sintering of nanomaterials is a technologically important process and has been
studied by both experimental researchers [10–13] and those conducting model works [14–17].
First of all, various kinetic aspects of the sintering process related to the change in the
structure of nanomaterials and the growth of nanoparticles were examined [6,18–21]. To
describe the sintering process, the concept of residual dispersion was introduced [22].
However, there are durable nanomaterials that retain their three-dimensional structure
and developed surface for a long time (even over a dozen years), regardless of the op-
erating conditions, including those promoting the sintering process of nanocrystallites.
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An industrial iron catalyst for ammonia synthesis with a developed specific surface area
is an example. Long operation of this catalyst at temperatures greater than 773 K and
pressure up to 20 MPa causes only a slight loss of its activity [23–25]. A comprehensive
study containing an overview of sintering and related phenomena information published
until 2017 is presented in a monograph [26].

The iron catalyst for ammonia synthesis is obtained by reducing alloys of iron oxides
with hardly reducible oxides of the promoters K2O, Al2O3 and CaO. The promoters located
in three-dimensional spaces constitute a glassy phase that contains disordered components
in the form of oxygen and promoter metal ions. It is a solution from which components
diffuse and adsorb onto the iron surface. The size of iron nanocrystallites depends on
the chemical composition of the solid phase and the conditions of the reduction process
(chemical composition of the gas phase, temperature) [27]. To investigate the process of
sintering, measurements were performed both during the reduction at 773 K as well as
annealing of catalyst above a temperature of 773 K up to 993 K until the steady states were
reached [28]. An increase in temperature caused a decrease in the catalyst specific surface
area, while at the same time, iron nanocrystallite mean size increased. Based on the kinetic
measurements of the overheating process of this catalyst, equations describing the kinetics
of iron nanocrystallite sintering were proposed, determining the activation energy and the
rate constant of this process [22,28,29].

Since the development of the method of iron catalyst preparation, this substance
has been studied in detail, taking into account phenomena in the field of heterogeneous
catalysis [23,30–40]. The catalyst is also used as a model catalyst for the study of surface
phenomena [32,34–37,41–47].

The development of research techniques in the middle of the last century enabled
the use of various methods to study phenomena occurring on model, clean surfaces of
metal single crystals with a particular emphasis on the processes related to the reaction of
ammonia synthesis [35,36,41–45,48,49]. It was found that the sticking coefficient of nitro-
gen for different iron surfaces and the ability to reconstruct the surface of iron decreased
with increasing density of iron atoms packed at the surfaces (111), (100) and (110) [37,43].
The results of Ertl’s studies [45] showed that potassium, as an activating promoter in the
synthesis of ammonia, increased the activity of the iron surface regardless of its crystallo-
graphic structure.

Strongin and Somorjai suggested the possibility of (Al2O3 + H2O)-induced [50] and
ammonia-induced [51] surface restructuring of iron single crystals. Surface development of
the iron nanocrystallites depends upon the amount of oxygen bound with their surface.
The amount of oxygen atoms varies according to the kind of promoter wetting the iron
surface [52].

Studies of the phenomena occurring on the (111) surface of an iron single crystal as a
model system of α-Fe/O/S/K [53–55] and studies on the activity of iron catalyst were also
undertaken. These studies led to a model of the surface active in ammonia synthesis, where
potassium atoms are stabilized at the iron surface by oxygen atoms located under potassium
atoms (double layer model) [56]. In the layer of oxygen atoms, there are free adsorption sites
(of redox type) capable of the chemisorption of the nitrogen molecules between potassium
atoms. The presence of free iron atoms on the surface results from the geometrical reasons:
a potassium ion with its large radius (219 pm) can occupy, along with an oxygen atom,
only every other iron site [56]. It was shown that other oxides (structuring promoters of
the catalyst) wet the total surface of the catalyst with a “double layer” [56] (2D structure)
and can also form bridges between iron nanocrystallites (3D structure) [52,56]. The surface
reconstruction of iron ammonia catalyst may also be proposed with the conceptual double
layer model [56,57].

Already in the 1990s, it was hypothesized [52,56–58] that the structure of nanomate-
rials should be regarded as a result of setting up a thermodynamic equilibrium between
the surface and volume of nanocrystallites and components located in spaces between
nanocrystallites, when diffusion does not limit the mass transfer rate due to the high process
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temperature. Based on the above statements, the energy balance of the two-component
nanocrystalline system was developed and theoretical model calculations were carried
out [24,59,60]. It was shown that multi-component nanomaterials with a developed surface
can be in a state of chemical equilibrium.

Based on the above statements, the phenomena related to phase transformations in the
formation and reduction of iron nitrides in the ncFe/NH3/H2 system [59–67] were inter-
preted. In the nanocrystalline iron nitriding process, stationary states were identified [68], in
which catalytic ammonia decomposition rate, rd = const, the rate of nitriding reaction, rn = 0
and the maximum conversion, mn, of nanocrystalline material was a function of tempera-
ture and nitriding potential, P = pNH3/pH2

3/2 (pNH3, pH2—partial pressures of ammonia
and hydrogen), of the gas phase. The phenomenon of hysteresis was demonstrated [62]
based on the example of nanocrystalline iron nitriding and iron nitride reduction reactions
conducted under conditions close to chemical equilibrium. It was observed that the nitrid-
ing potential during the nitriding process was greater than during the reduction process. In
both processes, nanocrystallites react in the order according to their size of active specific
surfaces from small to large [59,60].

In the model of the surface double layer presented in previous works, the maximum
and constant coverage of iron nanocrystallite surfaces with promoter oxides under vacuum
conditions was assumed, taking into account the geometric aspects related to the sizes
of the 2D structure components. The aim of the present work was to generalize the
description of the thermodynamics of the sintering process of nanocrystalline metals and
to modify, supplement and generalize the described model, taking into account changes in
the composition of the gas phase and the degree of wetting of the nanocrystalline metal
surface with promoters depending on the temperature.

2. Experiment

The iron ammonia synthesis catalyst in a pre-reduced form, KM1R (manufactured
by Haldor Topsoe Company, Denmark), was studied. The catalyst’s sample chemical
composition was determined using the inductively coupled plasma method (ICP-OES,
spectrometer Perkin Elmer, type Optima 5300DV, Perkin Elmer, Woodbridge, Ontario,
Canada). It was determined that the catalyst, apart from metallic iron, contained promoters
(3.3 wt% Al2O3, 2.8 wt% CaO, 0.7 wt% K2O).

The processes that form the sample structure (heating the catalyst under reducing
conditions) and the chemical reactions studied (reducing the passive layer of the catalyst,
nitriding) were conducted in a tubular differential reactor enabling thermogravimetric
measurements (accuracy of 1·10−4 g) and the analysis of the chemical composition of the
gas phase (based on the gas-phase hydrogen concentration measurements performed with
an accuracy of 0.02 vol. %) [69]. Gas samples were taken from points located in the direct
surroundings of the catalyst bed and introduced to the katharometric analyzer (constructed
and built using our own resources and certified by external authorities). Based on a reactor
mass balance, an ammonia concentration in the gas phase was estimated. Flow rates of
gaseous reactant were controlled using electronic mass flowmeters. Samples weighing
approximately about 1 g characterized by grain size in the range of 1.0–1.2 mm were placed
as a single layer of grains in a platinum sample holder in the form of a basket connected to
the thermobalance measuring system. In such a measurement system, the conditions for
the process taking place in the kinetic reaction region were met.

During the reduction of the catalyst passive layer, the temperature of the reactor was
increased to 773 K at the rate of 10 ◦C min−1 and hydrogen flow of 150 cm3 min–1. At
773 K, the weight of the catalyst was constant (it did not change even after increasing the
process temperature).

In the first series of measurements, the catalyst sample was sequentially annealed at
temperatures of 823 K, 873 K, 923 K and 973 K for ca. 17 h in hydrogen and nitrided at 748 K
(after annealing at each above-mentioned temperature) with ammonia (200 cm3 min−1

with 100% of ammonia at the reactor inlet) until the nitride phase γ′-Fe4N was obtained.
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After the last cycle and sample reduction, the specific surface area was measured using
a volumetric method (using the Brunnauer–Emmet–Teller (BET) equation; automated
apparatus AutoChem II 2920, Micromeritrics, Norcross, GA, USA).

In the second series of measurements, the above-mentioned processes were carried out
periodically in the same way. After each annealing, nitriding and reduction of the sample,
the specific surface area was measured using the BET method.

To verify the stability of the sample structure, the samples were overheated in a
hydrogen atmosphere at the temperature of 973 K for 17 h and subsequently tempered for
50 h at 748 K. After analyzing the measurement results of the specific surface area, it was
concluded that after establishing the structure at higher temperatures, it did not change
at lower temperatures. The process of structure formation at higher temperatures was
irreversible by reducing the temperature.

To assess the morphological properties of the obtained samples, transmission electron
microscopy (TEM, Tecnai F30 with a field emission gun operating at 200 kV, Thermo Fisher
Scientific, Waltham, MA, USA) was used.

3. Results

Figure 1 presents some exemplary results of the measurement of nitrogen concentra-
tion by volume of the catalyst sample, xN

b, in the process of nitriding with ammonia at
748 K of iron catalyst reduced in hydrogen at 773 K. Vertical lines indicate the times t1 and
t2, at which the α → γ′ phase transformation of iron nanocrystallites with the smallest and
the largest sizes, respectively, took place.
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Figure 1. Concentrations of nitrogen in iron catalyst (reduced and annealed in hydrogen at 773 K) as
function of time in nitriding process at 748 K.

The probability density function (PDF) distribution of the specific surface, S, of iron
nanocrystallites, was determined based on the measurement of the catalyst nitriding
reaction rate presented elsewhere [70]. In the case of an iron catalyst, this distribution is
characterized by the sum of two Gaussian distributions.

The specific surface area measurement results regarding samples reduced and over-
heated at different temperatures are shown in Figure 2.

Measured specific surface area can be defined as a relation of the moles of covered,
nFe(MexO)

s, and uncovered, nFe
s, surface atoms to the sum of moles of atoms in the nanocrystallite:

S = ζ
ns

Fe + ns
Fe(MexO)

nb
Fe + ns

Fe + ns
Fe(MexO)

(1)

where nFe
b—moles of atoms in the volume of nanocrystallites, the constant, ζ = {(S/V)·1/ρ}

(ρ is the density in g·cm−3), is dependent on the substance; for iron, ζ = 0.45 m2 g−1.
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Figure 2. Specific surface area of samples reduced and overheated in hydrogen atmosphere in a
temperature range of 773 to 973 K.

Active specific surface area, A, can be defined as a relation of the moles of uncovered
surface atoms to the sum of moles of atoms in the nanocrystallite, which is approximately
equal to the maximum concentration of surface iron atoms, xFe

s,max:

A =
ns

Fe

nb
Fe + ns

Fe + ns
Fe(MexO)

≈
ns

Fe

nb
Fe

≈ xs,max
Fe (2)

For single nanocrystallites, specific (total and active) surfaces can be represented as
total surfaces and active surfaces related to the volume of single nanocrystallites, and
therefore, their dimension is nm2/nm3 = nm−1.

Figure 3 shows exemplary results of microscopic tests using the TEM technique for a
reference sample—reduced and annealed at a temperature of 773 K.
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Measurements were performed for all tested samples. It was observed that the largest
nanocrystallites did not change (they were approximately 90 nm in diameter; see Figure 3b).
However, the smallest nanocrystallites changed from approximately 20 nm for the sample
annealed at 773 K (Figure 3a) to almost 40 nm for the sample annealed at 973 K. A similar
result was obtained in [71]. The size range of iron nanocrystallites measured for a sample
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of an identical catalyst reduced and heated at 773 K, determined using scanning electron
microscopy, was 20–80 nm.

4. Discussion

In [28] identical samples of iron catalyst were tested. The results of measurements
of the specific surface area (determined using the BET equation) and the average size of
nanocrystallites (determined using the Scherrer equation) are presented in Table 1.

Table 1. Results of measurements of the specific surface area and average size of nanocrystallites of
samples reduced and annealed at temperatures of 773 to 993 K [28].

Temperature (K) Specific Surface Area (m2/g)
Average Size of Iron

Nanocrystallites (nm)

773 12.9 17

813 8.8 23

843 6.4 27

933 5.9 35

993 3.2 43

After converting the average nanocrystallite size values calculated using the Scherrer
equation into values calculated using the Rietveld method, the following were obtained:
45.0, 48.6, 51.3, 59.4 and 64.8 nm. Based on the similarity of the current measurement
results and those contained in [28], this study correlated the obtained surface area values
with previous measurement results of the average size of iron nanocrystallites after their
conversion. This seems justified, especially after taking into account the microscopic
measurements of the size ranges of iron nanocrystallites. These measurements indicate
that there is a correlation between both the specific surface areas and the average sizes of
nanocrystallites for the samples tested previously and currently.

The morphology of nanomaterials may be the result of establishing the thermodynamic
equilibrium between the surface and volume of nanocrystallites and the components
located in the spaces between the nanocrystallites (Figure 4a) [24]. Based on studies in
the nanocrystalline-Fe(Al2O3, CaO, K2O) system under ultrahigh vacuum conditions, a
surface model was presented [56], according to which the surface of nanocrystalline iron is
fully wetted with a double layer of atoms, where the promoter ion is bound to the surface
through the oxygen ion (Figure 4(bI)). This hypothesis has been used in the interpretation
of phenomena occurring on the surface of iron catalyst [24,59,60,67,71,72]. It was found
in [53,73,74] that oxygen may be present on the iron surface in a hydrogen atmosphere.
At 470 K under vacuum conditions, potassium desorbs from the iron surface [52,74]. The
potassium ion is stably bound to the iron surface in the presence of oxygen [52,53,73,74].

In an atmosphere of hydrogen, calcium and aluminum oxides wetting the iron sur-
face form functional groups of acidic (Fes-O-Al-(OH)2) or basic (Fes-O-Ca-O-H) nature
(Figure 4(bII)).

In nanocrystalline multicomponent materials, nanocrystallites may be in a state of
chemical equilibrium when the enthalpy of bond formation on the surface of these two
components, ∆Hwet, is equal to the enthalpy of dispersion, ∆Hdisp [24]:

∆Hwet + ∆Hdisp = 0 (3)

By increasing the temperature from T1 to T2, the solubility of oxygen, chemisorbed
on the iron surface, in the iron volume, increases, and thus decreases the concentration of
functional groups Fes-O-Me [74]. Increasing the concentration of free surface iron atoms
Fes- leads to the establishment of a new equilibrium state, in which nanocrystallites increase
in size (Figure 4(bIII)). Sintering of a nanocrystallite can be considered as an adiabatic,
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isobaric and isosteric process [24,59]. There is no nanocrystallite mass and energy exchange
with the surroundings.
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Figure 4. (a) Scheme of iron catalyst 2D and 3D structure, (b) Model of the surface of nanocrystalline
iron wetted with promoters in vacuum (I) and in hydrogen (II) and the scheme of the process of
uncovering the iron surface through the -O-K structures and sintering with temperature increase
from T1 to T2 (III).

The wetting phenomenon of the iron surface can be regarded as the sum of the
sublimation effect, H*

form, from the 3D phase of the promoter oxide and its adsorption
on the iron surface, Hads, taking into account the change in the surface energy of the
iron nanocrystallite, (HFe

s − HFe(MexO)
s). If we take as the reference catalyst, the iron

catalyst reduced at 773 K, the change of enthalpy of the process of wetting the surface of
nanocrystalline iron using promoters related to one surface bond can be written as:

∆Hwet = ∆H*
form + ∆Hads + (HFe

s − HFe(MexO)
s) (4)

The values of the surface energy of iron available in the literature show discrepan-
cies [75]. On the basis of the experimental data included in [76], the value of the surface
energy of the pure surface HFe

s = 90–92 kJ/mol for the temperature range 773–973 K was
extrapolated. Assuming that the enthalpy of formation of the bond, Fes-O, is equal to the
enthalpy of breaking the bond in Fe3O4, ∆Hads = −140 kJ/mol.

The energy effects of the process of wetting the surface of iron using metal oxides can
be assessed based on Equation (4), taking into account the energy balance and equations
describing the thermodynamic equilibrium in the studied nanocrystalline system, the
enthalpies of formation of appropriate promoter oxides and the maximum concentration of
promoter dipoles on the surface of iron nanocrystallites (Table 2).
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Table 2. Enthalpies of formation of oxides Fe3O4, CaO, K2O, Al2O3 and enthalpies of wetting of iron
surface with oxides (under standard conditions).

Substance Enthalpy of Formation,
∆Hform (kJ/mol)

Enthalpy of Formation with Respect to One
Me-O Bond,

∆H*
form (kJ/mol)

Wetting Enthalpy
∆Hwet + ∆HFe(MexO)

s (kJ/mol)

K2O −363 −182 −50

Fe3O4 −1118 −140 0

Al2O3 −1676 −280 232

CaO −635 −317 269

According to the estimated values of the enthalpy of wetting the iron surface using
individual promoter oxides, taking into account the geometric aspects related to wet-
ting the surface using potassium, [56] the surface promoter oxides can be ranked in the
following order:

Fes-O-K > Fes-O-H > Fes-O-Al-(OH)2 > Fes-O-Ca-OH

The value of ∆HFe(MexO)
s is not exactly known, but changing it will not change the

order of the promoter dipoles in the series shown above.
It was stated in [58,77] that during the reduction of precursor in the preparation of the

iron catalyst of ammonia synthesis, the nanostructure was first formed due to the presence
of structure-forming promoters dissolved in the iron oxide phase. Then, potassium present
in the intergranular spaces of the catalyst precursor [58,77] diffused to the surface of the
already formed catalyst nanostructure, replacing the dipoles, containing aluminum and
calcium, located there first. Thus, the series of promoter dipoles presented above justifies
this mechanism of formation of the catalyst nanostructure and its active surface and explains
the roles of promoters in the catalyst and its synthesis as well as their classical division.

Due to the larger size of potassium ions in relation to iron and oxygen ions, this dipole
can occupy a maximum of 50% of the surface of iron nanocrystallites. The remaining iron
atoms not covered by surface dipoles are active sites in the nano-Fe-N2-H2 system in the
chemical reactions of ammonia synthesis and decomposition and in the sintering process.

Classically, a promoter found in the above row on the left-hand side of iron is called
activating. Structure-forming promoters are located on the right-hand side of iron. The
surface of iron nanocrystallites covered with potassium oxide is thermodynamically favored
compared to other iron catalyst promoters. In [56,57], it was presented that promoters,
considered electro-donating, also influenced the size of the specific surface area of the
studied catalyst.

In the state of chemical equilibrium of a monodisperse system with a certain specific
surface area, the following equations are satisfied [24]:
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Kb
MexO =

ln ab
MexO

ln as
Fe(MexO)

(7)

where K—equilibrium constant; a—activity; subscripts: Fe—iron, Fe(MexO)—iron atoms
covered with promoters, b—bulk of the nanocrystallite or glass phase which is the source
of promoters, s—nanocrystallite surface.

In a polydisperse system, only the smallest nanocrystallite obtained at a certain
temperature is in the state of chemical equilibrium at this temperature and all three
Equations (5)–(7) are satisfied.

In the process of sintering, with increasing temperature, the concentration of pro-
moters on the surface and the specific surface area of the sample decreased, while the
average size of nanocrystallites increased [24]. Lowering of the temperature did not cause
the reverse process [28,78], i.e., the reduction of the nanocrystallites’ sizes, and thus the
nanocrystallites formed at a higher temperature were not in thermodynamic equilibrium at
a lower temperature. For larger nanocrystallites, only Equations (6) and (7) are satisfied.

Taking into account the order of dipole wettability, it was assumed that the main
component of the surface was a dipole containing potassium. Due to the geometrical aspect
(maximum 50% of the area occupied by surface potassium oxide) and taking into account
that the surface coverage degree decreased with increasing temperature, Equations (5)–(7)
can be expressed as:

Kb
Fe∗ =

xb
Fe(K2O)

xs
Fe

(8)

Ks
Fe∗ =

xs
Fe(K2O)

xs
Fe

(9)

Kb
K2O∗ =

xb
K2O

xs
Fe(K2O)

(10)

wherein the relationship between KFe
b and KFe

b* is as follows:

Kb
Fe

Kb
Fe∗

=
P0,K2O ln ab

Fe(K2O)

xb
Fe(K2O)

ln P0,K2O
(11)

where P0,K2O—equilibrium potential of the potassium-containing promoter in the sys-
tem studied.

Molar concentration, x, was calculated taking into account that the total number
of moles of atoms, n, is a sum of the moles of surface and bulk iron atoms, nFe, in a
nanocrystallite. In the case of a single nanocrystallite, surfaces containing nFe

s moles
of atoms with unsaturated chemical bonds and nFe(K2O)

s moles of atoms with saturated
bonds were considered separately. The surface concentration of iron atoms occupied with
promoters on the surface of nanocrystallites, xs

Fe(K2O)
, is defined as a ratio of the number of

moles of iron atoms occupied by the promoters, nFe(K2O)
s, to the total number of moles of

iron, nFe. The surface concentration of free iron atoms on the surface of nanocrystallites,
xs

Fe, is defined as a ratio of the number of moles of free, surface iron atoms, nFe
s, to the total

number of moles of iron, nFe. The concentration of iron atoms in the nanocrystallite bulk,
xb

Fe(K2O), is the ratio of the number of moles of iron atoms in the nanocrystallite bulk, nFe
b,

to the total number of moles of iron atoms, nFe.
The surface energies of the uncovered iron surface (GFe

s) and the iron surface covered
by promoters (GFe(K2O)

s) are defined as:

Gs
Fe = ∑

i
SFe,iGs

Fe,i

Gs
Fe(K2O)

= ∑
i

SFe(K2O),iGs
Fe(K2O),i

(12)
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where: SFe—specific surface (uncovered), SFe(K2O)—specific surface (covered); subscript
i—means that different crystallographic planes are present on the uncovered and cov-
ered surface.

A clean surface with only iron atoms (one-component system, xs
Fe(K2O)

= 0) has the
highest surface energy (there are only surface atoms with free bonds). The result of partial
surface coverage (0 < xs

Fe(K2O)
< 1) is the reduction in the nanocrystallite surface energy

following saturation of the free bonds of some of the surface atoms (GFe
s > GFe(K2O)

s). Total
surface energy, Gs, which is as follows:

Gs [GFe
s (xs,max

Fe − xs
Fe(K2O)) Fe(K2O)

s xs
Fe(K2O)

]
(13)

reaches a minimum in a state of equilibrium.
Based on the above balance, the area ratio in two equilibrium states, xFe,1

s,max/xFe,2
s,max,

was determined at different surface concentrations of potassium-containing dipoles:

xs,max
Fe,1

xs,max
Fe,2

= 1 −
xs

Fe(K2O),2∆Gwet,1−2

2GFe,2
(14)

assuming that the iron catalyst reduced at 773 K was the reference catalyst marked with
the number 1.

Model calculation results obtained using Equation (14) can be directly compared
with the experimental data on the specific surface area of the tested sample thanks to the
introduction of the coefficient ζ in Equation (1), which takes into account the properties of
the real reaction system and finally the obtained result has the dimension m2g−1.

If nanocrystallites are formed under different potential and temperature conditions,
they have different specific active surfaces and different dispersions. In real systems,
nanocrystalline materials are characterized by a certain probability density function, PDF
(e.g., the most abundant in the literature Gaussian distribution), according to the specific
active surface, determined by the mean value of specific active surface, Am, and half width
at half maximum, σ.

Nanocrystallites obtained at constant temperature and under the chemical potential
of the MexO promoter within the range from PMexO

I to PMexO
II may, when the potential

decreases to PMexO
III as a result of decreasing the potential or increasing the temperature,

undergo a structural modification following sintering. The mass of sintering nanocrystal-
lites with the most developed specific active surface area, which was unstable at a smaller
potential PMexO

III, was remaining in the system. The new distribution will be narrower and
characterized by a smaller average value.

Based on the measurements of the rate of nanocrystalline iron nitriding and the
measurements of the specific surfaces of catalyst annealed and sintered in hydrogen in the
temperature range 773–973 K to obtain steady states, the density distribution probabilities of
iron nanocrystallites in the studied samples were determined elsewhere [70]. The products
of the shares of individual nanocrystallite fractions and their specific surface area are
presented in Figure 5 (black lines). The sum of the PDF function corresponds to the integral
of the specific surfaces of the individual fractions of nanocrystallites in the catalysts.

As a result of the fitting, the model density distribution probabilities of specific surface
of iron nanocrystallites were determined as the sum of two Gaussian distributions (Figure 5,
red lines). It has been shown that the biggest nanocrystallite in the sintering process did
not change (all lines started at the same point at ca. 0.075 nm−1, corresponding with the
biggest iron nanocrystallites of the smallest specific surface area), but the size of the smallest
nanocrystallites was increased with increasing sintering temperature (each line ended in
a different point corresponding with the smallest iron nanocrystallites formed in a given
annealing temperature). This was also confirmed by the results of TEM measurements (the
largest nanocrystallites remained unchanged, and the smallest ones transformed into larger
and larger ones during the sintering process).
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Figure 5. Probabilities of the distribution densities of specific surface areas of nanocrystalline iron
sintered at different temperatures within the range of 773–973 K (black lines—measurement results;
red lines—fitting results).

Based on the results of measurements of samples reduced in a temperature range of
773 to 973 K and quickly cooled to 298 K presented in [69,79], the values of the fraction
of the active surface of iron nanocrystallites in relation to their total surface, A/S, were
determined (Figure 6). Using the values of Si

max for the smallest nanocrystallite in the
catalyst samples read from Figure 5 and the A/S values, the active specific surfaces, Ai

max,
of the smallest nanocrystallites in the catalysts were calculated (Figure 6). Using the total
values of S for the whole catalyst samples (read from Figure 2 and expressed in nm−1)
and the A/S values, the active specific surfaces, A, of the whole of catalyst samples were
calculated (Figure 6).
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Figure 6. Dependence of the specific surface Si
max (nm−1), the active specific surface Ai

max (nm−1) of
the smallest nanocrystallite in the i-th sample; the specific surface S (nm−1), the active specific surface
A (nm−1) and the ratio of the active area to the total area of the whole sample A/S on the temperature.

The maximum surface coverage degree of the potassium-containing promoter dipoles
was shown to be 0.54, which is approximately in line with the theoretical assumptions of
the double layer model [56].
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Based on Equations (5) and (11) and the measurement results presented in Figure 6,
the values of thermodynamic parameters (free enthalpy, enthalpy and entropy) character-
izing the sintering process of the smallest iron nanocrystallites in catalyst samples were
determined (Table 3).

Table 3. Values of thermodynamic parameters characterizing the sintering process for the smallest
nanocrystallite of Si

max and the total sample of S surface.

Temperature ∆G(Si
max) ∆G(S) ∆H(Si

max) ∆H(S) ∆S(Si
max) ∆S(S)

(K) (kJ mol–1) (kJ mol–1 K–1)

773 −55 −28

0.7 33.4 0.072 0.078
823 −58 −30
873 −60 −33
923 −67 −37
973 −71 −45

In the case of two-component nanocrystalline Fe-OK systems, in the sintering process
(Fes → Feb), the concentration of dipoles, -OK, on the surface was reduced (endothermic
process) and the active specific surface was changed (exothermic process). Based on the re-
sults of measurements of the active specific surface area of the smallest iron nanocrystallites,
the value of the enthalpy of the sintering process, ∆H(Si

max) = 0.7 kJ/mol, was calculated
(Table 3), which is a value much lower than the surface energy of approx. 90 kJ/mol, which
is consistent with assumptions of the adopted isothermal, adiabatic and isosteric sintering
model, according to which ∆H(Si

max) = 0 kJ/mol (Equation (3)).
Only the smallest nanocrystallites at a given temperature remained in the chemical

equilibrium satisfying all three Equations (5)–(7). In the case of larger nanocrystallites,
Equation (5) was not met. Equilibrium can only be achieved between the glassy phase and
the nanocrystallite surface (Equation (6)).

The values of thermodynamic parameters determined for all nanocrystallites in the
catalysts (taking into account the total BET surface area) indicated that the total observed
effect of the sintering process was endothermic, ∆H(Si

max) = 33 kJ/mol, in which the wetting
energy was greater than the change in surface energy. The wetting energy was the sum of
the surface energy change and sintering energy (Fes → Feb).

The dispersion process can only take place with the supply of additional energy.
However, this cannot be achieved by increasing the temperature. Thus, the sintering
process is not a reversible one, and with a decrease in temperature below the formation
temperature, the volume of the crystallites does not change. There is therefore no balance
between process conditions and the volume of the nanocrystallite. A new equilibrium may
be established between the promoters on the surface of the α-Fe(K2O) phase, xK2O

s, and a
glass phase.

5. Conclusions

An extended model of the active surface of the iron ammonia synthesis catalyst
is presented, taking into account the influence of a gas-phase composition and process
temperature. Based on this model, the roles of activating and structure-forming promoter
dipoles in the formation of the catalyst structure, including the creation of active sites on the
iron nanocrystallite surface, in the catalyst precursor reduction process, were interpreted.
It has been shown that the surface was wetted mainly by potassium, which was assigned
the role of an electron promoter, and it also acted as a structure-forming promoter.

Based on the conclusions from previous studies and experimental results, a model
was presented and the values of thermodynamic parameters of the iron catalyst sintering
process were determined.
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24. Arabczyk, W.; Pelka, R.; Jasińska, I. Extended Surface of Materials as a Result of Chemical Equilibrium. J. Nanomater. 2014,

2014, 159. [CrossRef]
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78. Jasińska, I.; Lubkowski, K.; Arabczyk, W. The surface properties of iron catalyst for ammonia synthesis. Ann. Pol. Chem. Soc. 2003,
2, 1205–1209.
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