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This Special Issue, “Applications of Machine Learning to the Study of Crystalline
Materials”, is a collection of seven original articles published in 2021 and 2022 and dedicated
to applications of machine learning in materials research.

Machine learning (ML) is rapidly revolutionizing many fields and is starting to change
landscapes for physics, chemistry, materials science, and structural research. With its ability
to solve complex tasks autonomously, ML is being exploited as a radically new way to help
find material correlations, understand materials chemistry, analyze crystal structures and
related properties, and generally accelerate the discovery of new materials. Thus, one goal
of this special issue is to demonstrate available, practical machine learning techniques that
can be used to study crystalline materials today by means of the application of different
ML techniques (including deep learning), as well as by the demonstration of best practices.

The focus of this Special Issue is the practical application of ML in materials research
in order to inspire more materials scientists and crystallographers to use ML as a powerful
tool in research and also to demonstrate the potential benefits of ML, as well as to improve
communication between theoretically and more practically working scientists, in order to
reduce any inhibitions that may exist. In this context, one goal may be to establish ML as a
way to usefully extend existing analytical procedures and also to obtain results that cannot
be obtained by experiments and standard procedures, or only at a disproportionately
high cost.

The development of new ceramic gas separation membranes for the production of
pure oxygen is demonstrated by Schlenz et al. [1]. For this work, mainly experimental data
were used to generate training data for ML, where the training data contained information
on both crystal structures and the microstructures of selected ceramic phases. The use of
artificial neural networks (ANNs) for optimizing the fabrication and alloying processes of
Al75O75-TiC composites is demonstrated by Alam et al. [2]. Using ANNs, the crystallite
sizes and lattice strains of the composites could be predicted. An alternative approach
is taken by Shu et al. [3] for the prediction of microstructures of polycrystalline phases.
For this purpose, grain knowledge graphs were used, and a new heterogeneous grain graph
attention model (HGGAT) is presented. The operation of HGGAT is demonstrated using the
prediction of magnesium alloy microstructures as an example. Even Gómez-Peralta et al. [4]
used ANNs for materials research, this time, however, in order to classify crystal structures.
In this work, different halite, fluorite, ilmenite, spinel, and perovskite phases could be dis-
tinguished with an average precision of about 94%, by means of crystal-site-based features.
Spinel represents the focus of the work of Lin et al. [5]. They applied ML to the develop-
ment of new photocatalytic phases, based on highly entropic spinels. Predictions for this
promising class of materials are demonstrated using the system (Co, Cr, Fe, Mn, Ni)3O4 as
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an example. As in the work of Schlenz et al. [1] and Gómez-Peralta et al. [4], perovskite
is the focus of interest in the work of Li et al. [6]. Here, ML was used for the successful
prediction of specific properties, for example, formation energies, thermodynamic stability,
crystal volume, and oxygen vacancy formation energies, where the latter again provides
important information for the first contribution [1]. Li et al. [6] tested different ML algo-
rithms for this purpose and compared their results. Finally, Trampert et al. [7] used deep
neural networks for image analysis. Microscopy images were analyzed with Convolutional
Neural Networks (CNNs), but with a special feature: synthetic image data were generated
for training the CNNs, which makes it possible to train neural networks in a meaningful
way in the case of insufficient image data.

We hope that the contributions in this Special Issue will be especially helpful for further
progress in materials research and for the establishment of ML methods as a standard tool,
and we would also like to express our sincere thanks to all the authors who have made
their contributions to this issue.
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