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Abstract

Callogenesis is one of the most powerful biotechnological approaches for in vitro secondary

metabolite production and indirect organogenesis in Passiflora caerulea. Comprehensive

knowledge of callogenesis and optimized protocol can be obtained by the application of a

combination of machine learning (ML) and optimization algorithms. In the present investiga-

tion, the callogenesis responses (i.e., callogenesis rate and callus fresh weight) of P. caeru-

lea were predicted based on different types and concentrations of plant growth regulators

(PGRs) (i.e., 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP), 1-

naphthaleneacetic acid (NAA), and indole-3-Butyric Acid (IBA)) as well as explant types

(i.e., leaf, node, and internode) using multilayer perceptron (MLP). Moreover, the developed

models were integrated into the genetic algorithm (GA) to optimize the concentration of

PGRs and explant types for maximizing callogenesis responses. Furthermore, sensitivity

analysis was conducted to assess the importance of each input variable on the callogenesis

responses. The results showed that MLP had high predictive accuracy (R2 > 0.81) in both

training and testing sets for modeling all studied parameters. Based on the results of the

optimization process, the highest callogenesis rate (100%) would be obtained from the leaf

explant cultured in the medium supplemented with 0.52 mg/L IBA plus 0.43 mg/L NAA plus

1.4 mg/L 2,4-D plus 0.2 mg/L BAP. The results of the sensitivity analysis showed the

explant-dependent impact of the exogenous application of PGRs on callogenesis. Gener-

ally, the results showed that a combination of MLP and GA can display a forward-thinking

aid to optimize and predict in vitro culture systems and consequentially cope with several

challenges faced currently in Passiflora tissue culture.

Introduction

Passiflora caerulea L. is a fast-growing and evergreen climbing plant that can grow as either a

shrub or a large tree [1, 2]. The unique secondary metabolite profiles of P. caerulea such as β-

carotene, catechins, tannins, and flavonoids as well as vitamins C and E [3, 4] have resulted in

wide use of this plant in traditional medicine due to its anti-addictive [5, 6], anti-hypertensive

[7], anti-diabetic/hypolipidemic [8], anti-asthma/anti-respiratory disorders [9], anti-

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0292359 January 24, 2024 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Jafari M, Daneshvar MH (2024) Machine

learning-mediated Passiflora caerulea callogenesis

optimization. PLoS ONE 19(1): e0292359. https://

doi.org/10.1371/journal.pone.0292359

Editor: Abhishek Kumar, Panjab University Faculty

of Science, INDIA

Received: February 22, 2023

Accepted: September 19, 2023

Published: January 24, 2024

Copyright: © 2024 Jafari, Daneshvar. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0009-0009-4082-1608
https://doi.org/10.1371/journal.pone.0292359
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292359&domain=pdf&date_stamp=2024-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292359&domain=pdf&date_stamp=2024-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292359&domain=pdf&date_stamp=2024-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292359&domain=pdf&date_stamp=2024-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292359&domain=pdf&date_stamp=2024-01-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0292359&domain=pdf&date_stamp=2024-01-24
https://doi.org/10.1371/journal.pone.0292359
https://doi.org/10.1371/journal.pone.0292359
http://creativecommons.org/licenses/by/4.0/


spasmolytic [10], sedative/anti-sleep disorders [11], and anti-depressive/anti-anxiolytic [12,

13] potentials. Since the use of P. caerulea in medicine has increased over the last several years

[4], there is a dire need to develop powerful and reliable biotechnological tools to improve sec-

ondary metabolite production in this valuable plant.

Callogenesis (i.e., in vitro callus development) can be considered one of the most powerful

biotechnological tools for in vitro secondary metabolite production [14–16]. In addition, callo-

genesis can be used to preserve important genotypes [1], thanks to the possibility of obtaining

many clones, banking in a gene bank, and also for bioenergy production [17]. However, it is

necessary to optimize several factors involved in callogenesis [18] (Fig 1). The type and con-

centration of plant growth regulators (PGRs) as well as the type of explants can be considered

fundamental factors affecting callogenesis [19]. In fact, any given concentration of PGRs will

fall within the various dose-response range according to the species and type of explants [15].

Therefore, the concentration of PGRs should be optimized before their application. However,

constructing and optimizing tissue culture protocols represents a major challenge to the field

as a whole [20]. Traditionally, tissue culture systems have been developed through large-scale

experiments to sequentially optimize individual variables using conventional statistical models

and thousands of treatments [21]. These methods are constrained by large treatment require-

ments and simple linear/curvilinear relationships unsuited for assessing unpredictable interac-

tions of biological systems [21]. Ultimately, such approaches can take insurmountable

timespans and resources to develop improved, tough suboptimal tissue culture protocols [22].

Thus, due to the potential to exclude dynamic interactional effects of combined factors, opti-

mization methods must be re-imagined using a modern approach to simultaneously optimize

multiple factors for development of precision techniques [23]. For these reasons, applying new

powerful approaches for analyzing and predicting in vitro culture systems is crucial [18].

Machine learning (ML) is defined as an evolving sub-branch of artificial intelligence which

can be considered a reliable and promising computational method to predict and optimize a

broad range of complicated biological systems [22, 24–32]. Machine learning offers a new par-

adigm in the optimization of in vitro biology that leverages modern computing power to rec-

ognize patterns in complex and chaotic data sets such as those characteristics of tissue culture

[18]. The powerful interoperative processes of newly developed nonlinear machine learning

Fig 1. Schematic view of factors influencing callogenesis.

https://doi.org/10.1371/journal.pone.0292359.g001
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algorithms have recently been a focus for plant system biology [28], plant breeding [24], and

plant tissue culture [18]. These methods remove uncertainties associated with dynamic tissue

responses by diagnosing complex patterns and uses algorithms to predict optimal combina-

tions of factors for desired results [22]. These patterns can then be analyzed using optimization

algorithms to predict optimal combinations of factors for desired outcomes [21]. The robust-

ness and accuracy of hybrid ML-optimization algorithms in modeling and predicting different

in vitro culture systems have been previously confirmed in different species such as chrysan-

themum [33–38], passion fruit [39], Prunus rootstock [40–42], hazel [43], tomato [44], chick-

pea [45, 46], wheat [47], cannabis [21, 23, 48–51], and ajowan [52].

In recent years, there has been a growing interest in the integration of genetic algorithm

(GA) with artificial neural networks (ANNs) to optimize complex systems, including plant tis-

sue culture systems [24, 29, 42, 53–56]. GA is a powerful optimization technique inspired by

the principles of natural selection and evolution, while ANNs are versatile machine learning

models that can capture intricate patterns in data [37, 41, 42]. By combining these two

approaches, researchers can create a powerful optimization framework to identify optimal

combinations of PGRs, nutrient compositions, and other critical factors that influence in vitro
culture efficiency [18, 57]. The ANN-GA hybrid approach allows for a more systematic and

automated exploration of the solution space, leading to improved tissue culture protocols and

potentially accelerating the development of desirable plant traits with broader implications for

agriculture, horticulture, and biotechnology [18, 53, 57, 58].

Although there is no study to use ANN methods for modeling and optimizing callogenesis

of P. caerulea, ANN can be considered a powerful and helpful approach for getting compre-

hensive insights into callus formation in this valuable plant. Therefore, in the current study,

ML algorithm was employed to develop a predictive model for getting in-depth insight into

the effect of PGRs and type of explants on callogenesis of P. caerulea. Furthermore, GA was

linked to the developed ANN model to find the optimized levels of PGRs for maximizing the

callogenesis.

Materials and methods

Plant material and experimental design

The seed sterilization and germination of P. caerulea were performed based on our previous

protocol [59]. In the current study, three different explants (i.e., leaf, internode, and node)

with 0.5 cm lengths were selected from a four-week-old in vitro-grown seedling of P. caerulea.

In order to develop callus, leaves were cultured in Murashige and Skoog (MS) [60] medium

containing 0.6 g/L agar and 30 g/L (basal media) along with various concentration and types

of PGRs on the abaxial side, while internode and node explants were horizontally cultured on

the mentioned medium.

The basal media contained various exogenous PGRs at different concentrations including

2,4-dichlorophenoxyacetic acid (2,4-D: 0.0, 1.0, 1.5 and 2.0 mg/L), 6-benzylaminopurine

(BAP: 0.0, 0.1, 0.15, and 0.2 mg/L), 1-naphthaleneacetic acid (NAA: 0.0, 1.0, 1.5 and 2.0 mg/L),

and indole-3-Butyric Acid (IBA: 0.0, 1.0, 1.5 and 2.0 mg/L). The experiment was performed

based on a completely randomized design with a total of 30 treatments in triplicate. Each repli-

cate consisted of 10 culture boxes and one explant was cultured in each box. The pH of all the

media was adjusted to 5.7 before autoclaving at 121˚C at 0.1 MPa for 20 min. All the chemicals

for in vitro culture were supplied by Merck (Sigma-Aldrich products, Irvine, UK). The cultures

were kept in a growth chamber at the temperature of 25˚C ± 2˚C in dark conditions for one

month. After this period (one month), the callogenesis rate and fresh weight of callus were

measured. The obtained data was used as a dataset to feed ML algorithms.
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Machine learning procedures

Box-Cox transformation was used to normalize data by stabilizing variance and achieving a

more approximate normal distribution. It was employed before applying machine learning

algorithms to improve model performance. Although principal component analysis (PCA)

was applied to determine outliers, no outlier was detected in the dataset. Type of explant (i.e.,

callus derived from different explants including leaf, node, and internode), 2,4-D, BAP, IBA,

and NAA were considered as input variables, while callogenesis rate and fresh weight of callus

were fed to ML as target variables (Fig 2). Moreover, 75% and 25% of the dataset were ran-

domly selected to train and test ML algorithms. In the current investigation, a multilayer per-

ceptron (MLP) algorithm was used to model and predict the callogenesis of P. caerulea.

The MLP-based back-propagation algorithm, one of the most commonly used artificial

neural network (ANN) methods, consists of three layers (i.e., input layer, one or more hidden

layers, and the output layer). MLP is inspired by the biological neural networks that constitute

animal brains (Fig 2A). For the model construction, the MLP algorithm was applied with 3

hidden layers, and the activation function for hidden and output layers was set to hyperbolic

tangent sigmoid function (tansig) and linear function (purelin), respectively. The Levenberg-

Marquardt algorithm was employed to adjust the bias and weights in the training set of the

network. To find the best topology of the model structure, the optimal number of neurons in

the hidden layers was detected based on trial-and-error analysis. Additionally, the error was

minimized between every input and output variable according to the following equation:

Error ¼
1

n

Xn

n¼1

ðOi � PiÞ
2

ð1Þ

In which, Oi and Pi display the measured values and predicted value, respectively. n is the total

amount of data.

In an MLP model with n inputs and m neurons in the hidden layer Pi is obtained from the

Eq (2):

Pi ¼ f
Xm

j¼1

wj:g
Xn

i¼1

wjixi þ wj0

 !

þ w0

" #

ð2Þ

Fig 2. The schematic representation of the step-by-step methodology of the current study including (A) data modeling through multilayer perceptron (MLP)

where inputs are explant type, 6-benzylaminopurine (BAP), indole-3-butyric acid (IBA), 2,4-dichlorophenoxyacetic acid (2,4-D), and 1-naphthaleneacetic acid

(NAA), and outputs are callogenesis rate and callus fresh weight, (B) optimization process through a genetic algorithm (GA), and (C) optimized callogenesis

protocol for P. caerulea.

https://doi.org/10.1371/journal.pone.0292359.g002
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where m is the number of neurons in the hidden layer. xi and n represent the ith input variable

and output variables, respectively. w0 and wj0 display the bias of output neurons and jth the

neuron of the hidden layer. f and g denote the transfer functions for the output and hidden

layer, respectively. wji and wj indicate the weight connecting the jth the neuron of the hidden

layer and the weight linking the neuron of the output layer.

The accuracy and efficiency of the MLP models were evaluated by using three different per-

formance criteria including coefficient of determination (R2), mean absolute error (MAE),

and root mean square error (RMSE) according to the following equations:

R2 ¼ 1 �

Pn
i¼1
ðyi � ŷiÞ

2

Pn
i¼1
ðyi � �yiÞ

2
ð3Þ

MAE ¼ 1=n
Xn

i¼1

jyi � ŷij ð4Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðyi � ŷiÞ
2

 !

=n

v
u
u
t ð5Þ

Where yi is the value of prediction, n is the number of data, and ŷi is value of observation.

Optimization process

In the current study, a genetic algorithm (GA), as an evolutionary optimization algorithm

inspired by the genetic concepts (Fig 2B), was used to find the optimal level of 2,4-D, BAP,

IBA, NAA, and explant type in order to maximize callogenesis rate and fresh weight of callus.

Hence, the developed MLP models were fed to GA (Fig 2B) where the generation number, ini-

tial population, selection function, cross-over function, crossover rate, mutation function, and

mutation rate were respectively considered as 1000, 200, Roulette Wheel, two-point cross-

over, 0.6, uniform, and 0.05.

Sensitivity analysis

Sensitivity analysis was conducted to evaluate the importance degree of explant, 2,4-D, BAP, IBA,

and NAA on callogenesis rate and fresh weight of callus by calculating variable sensitivity error

(VSE) and variable sensitivity ratio (VSR). VSE shows the RMSE of the developed MLP model

when the input is eliminated from the developed model. VSR equals the ratio of VSE and RMSE of

the developed MLP when all inputs are available. Then, the importance of input variables is ranked

based on the value of VSR. All the analyses were also conducted using MATLAB1 software.

Results

Effect of plant growth regulators and type of explants on callogenesis in P.

caerulea
In the current study, the effect of different types and concentrations of PGRs (i.e., 2,4-D, BAP,

IBA, and NAA) as well as explant type (i.e., leaf, node, and internode) were evaluated on callo-

genesis responses (i.e., callogenesis rate and callus fresh weight) of P. caerulea. Based on our

observation, callus formation was initiated after one week (Fig 3A). After two weeks, half of

the explant surface was covered by calli (Fig 3B). Ultimately, callogenesis was completed after

one month (Fig 3C). Based on Table 1, different callogenesis responses were obtained from
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different types of explants in the media containing various combinations of PGRs. The highest

callogenesis rate and callus fresh weight were obtained from node segment followed by leaf

and internode explants (Table 1). In relation to the combination of PGRs, the media contain-

ing 2 mg/L 2,4-D along with 0.2 mg/L BAP led to the maximum callogenesis rate and callus

fresh weight (Table 1). Also, our results showed that there was no callogenesis in the media

without PGRs (Table 1).

In relation to the interaction between explant type and PGRs, the maximum callogenesis

rate (100 ± 0.0%) was observed in all explants cultured in the media containing 2 mg/L 2,4-D

along with 0.2 mg/L BAP (Table 1). However, the highest callus fresh weight (1.87±0.033 g)

was observed in leaf explants cultured in the media containing 2 mg/L 2,4-D along with 0.2

mg/L BAP (Table 1).

Evaluation of multilayer perceptron (MLP) in modeling and predicting the

callogenesis in P. caerulea
In the present investigation, the callogenesis responses of P. caerulea were predicted based on

different types and concentrations of PGRs (i.e., 2,4-D, BAP, IBA, and NAA) as well as explant

types (i.e., leaf, node, and internode) using MLP algorithm. Based on the results (Table 2), the

MLP algorithm led to the development of predictive models with very high R2 in either testing

or training subsets for all the callogenesis responses including callogenesis rate (R2 > 0.81) and

callus fresh weight (R2 > 0.95). Furthermore, the observed and predicted values in all the callo-

genesis responses were perfectly correlated in both training and testing subsets (Fig 4).

In addition, RMSE was used to evaluate the accuracy of the developed MLP models. The

results showed that the MLP algorithm led to a very high accuracy and performance in either

testing or training subsets for all the callogenesis responses including callogenesis rate

(RMSE < 15.59) and callus fresh weight (RMSE < 0.13) (Table 2). MAE as another perfor-

mance criterion showed that the MLP algorithm led to a very high accuracy and performance

in either testing or training subsets for all the callogenesis responses including callogenesis rate

(MAE < 4.87) and callus fresh weight (MAE < 0.04) (Table 2).

Optimization process using genetic algorithm (GA)

The developed MLP models were integrated into GA as a single-objective evolutionary optimi-

zation method to optimize the concentration of PGRs (i.e., 2,4-D, BAP, IBA, and NAA) and

Fig 3. Callus formation in P. caerulea after (A) one week, (B) two weeks, and (C) one month.

https://doi.org/10.1371/journal.pone.0292359.g003
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explant types (i.e., leaf, node, and internode) for maximizing the callogenesis responses of P.

caerulea. Based on the results of optimization using MLP-GA (Table 3), the highest callogen-

esis rate (100%) would be obtained from leaf explants cultured in the medium supplemented

with 0.52 mg/L IBA plus 0.43 mg/L NAA plus 1.4 mg/L 2,4-D plus 0.2 mg/L BAP. Also, the

Table 1. Effect of plant growth regulators and type of explant on callogenesis in P. caerulea.

Explant type IBA (mg/L) NAA (mg/L) 2,4-D (mg/L) BAP (mg/L) Callogenesis rate (%) Callus fresh weight (g)

Leaf 1 0 0 0.1 53.33±3.333 0.53±0.033

Node 1 0 0 0.1 53.33±3.333 0.37±0.033

Internode 1 0 0 0.1 60.00±0.000 0.27±0.033

Leaf 1.5 0 0 0.15 66.67±3.333 0.67±0.033

Node 1.5 0 0 0.15 63.33±3.333 0.50±0.058

Internode 1.5 0 0 0.15 63.33±3.333 0.27±0.033

Leaf 2 0 0 0.2 70.00±0.000 0.73±0.033

Node 2 0 0 0.2 70.00±0.000 0.63±0.033

Internode 2 0 0 0.2 70.00±0.000 0.53±0.033

Leaf 0 1 0 0.1 70.00±0.000 0.77±0.033

Node 0 1 0 0.1 70.00±0.000 0.60±0.058

Internode 0 1 0 0.1 70.00±0.000 0.47±0.033

Leaf 0 1.5 0 0.15 80.00±0.000 0.87±0.033

Node 0 1.5 0 0.15 80.00±0.000 0.63±0.033

Internode 0 1.5 0 0.15 80.00±0.000 0.57±0.033

Leaf 0 2 0 0.2 90.00±0.000 1.73±0.088

Node 0 2 0 0.2 90.00±0.000 1.20±0.115

Internode 0 2 0 0.2 90.00±0.000 1.00±0.058

Leaf 0 0 1 0.1 80.00±0.000 0.73±0.033

Node 0 0 1 0.1 80.00±0.000 0.63±0.033

Internode 0 0 1 0.1 80.00±0.000 0.53±0.033

Leaf 0 0 1.5 0.15 80.00±0.000 0.93±0.033

Node 0 0 1.5 0.15 80.00±0.000 0.77±0.033

Internode 0 0 1.5 0.15 80.00±0.000 0.63±0.033

Leaf 0 0 2 0.2 100.00±0.000 1.87±0.033

Node 0 0 2 0.2 100.00±0.000 1.40±0.058

Internode 0 0 2 0.2 100.00±0.000 1.17±0.033

Leaf 0 0 0 0 0.00±0.000 0.00±0.000

Node 0 0 0 0 0.00±0.000 0.00±0.000

Internode 0 0 0 0 0.00±0.000 0.00±0.000

2,4-D: 2,4-dichlorophenoxyacetic acid; BAP: 6-benzylaminopurine; IBA: indole-3-butyric acid; NAA: 1-naphthaleneacetic acid. Values represent mean ± standard error.

https://doi.org/10.1371/journal.pone.0292359.t001

Table 2. Performance criteria of multilayer perceptron (MLP) for callogenesis of P. caerulea in training and testing subsets.

Output subset R2 RMSE MAE

Callogenesis rate Training 0.996 1.485 0.000

Testing 0.814 15.591 4.870

Callus fresh weight Training 0.98 0.06 0.00

Testing 0.95 0.13 0.04

MAE: mean absolute error; R2: coefficient of determination; RMSE: root mean square error.

https://doi.org/10.1371/journal.pone.0292359.t002
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maximum callus fresh weight (1.87 g) would be obtained from leaf explants cultured in the

medium supplemented with 0.185 mg/L IBA plus 0.15 mg/L NAA plus 1.8 mg/L 2,4-D plus

0.17 mg/L BAP (Table 3).

Importance degree of each input on P. caerulea callogenesis responses

In the current study, sensitivity analysis through the calculation of variable sensitivity ratio

(VSR) was conducted to assess the importance of each input variable (i.e., explant type, 2,4-D,

BAP, IBA, and NAA) on the studied objective functions (i.e., callogenesis rate and callus fresh

weight). According to our results (Table 4), the explant type was the most important factor for

both callogenesis rate and callus fresh weight followed by 2,4-D, BAP, NAA, and IBA respec-

tively. Since the VSR values for explant type are considerably higher than all PGRs, it can be

concluded that the explant type is the most important factor for callogenesis (Table 4), show-

ing the explant-dependent impact of exogenous application of PGRs on callogenesis of P.

caerulea.

Fig 4. Scatter plot of values of observations vs. predictions in training sets and testing sets of the developed multilayer perceptron (MLP) models for (A)

callogenesis rate and (B) callus fresh weight in P. caerulea.

https://doi.org/10.1371/journal.pone.0292359.g004

Table 3. Determination of the optimal level of plant growth regulators and explant types for maximizing callogenesis responses through genetic algorithm.

Fitness function IBA (mg/L) NAA (mg/L) 2.4-D (mg/L) BAP (mg/L) Explant Predicted-optimized outcome

Callogenesis rate (%) 0.523 0.430 1.400 0.200 Leaf 100

Callus fresh weight (g) 0.185 0.150 1.800 0.170 Leaf 1.87

2,4-D: 2,4-dichlorophenoxyacetic acid; BAP: 6-benzylaminopurine; IBA: indole-3-butyric acid; NAA: 1-naphthaleneacetic acid.

https://doi.org/10.1371/journal.pone.0292359.t003
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Discussion

The micropropagation procedure, as vegetative reproduction in in vitro cultures, is an excel-

lent way to obtain clones (i.e., plants genetically identical to the parent plants) [61–63], in vitro
developmental biology study [64–66], and genetic improvement through genetic engineering

approaches [67]. One of the most effective in vitro culture methods is callogenesis, where callus

is used to obtain de novo shoots and/or secondary metabolites [68, 69].

The callogenesis protocol can be divided into two basic phases [15]. In phase I, the plant

material is selected [70]. This stage is extremely important because improperly selected

explants can determine the results of cultivating [71, 72]. The explants should be taken from a

young, healthy plant, living in an optimal environment [73]. Therefore, it is necessary to evalu-

ate the type of explants on callogenesis in phase I [19, 71, 74–78]. Our results showed that the

highest callogenesis was obtained from the node explant followed by leaf and internode

explants. In line with our results, previous studies showed that node and leaf explants devel-

oped a high rate of callogenesis in different Passiflora species such as P. alata [14], P. suberosa
[76], P. setacea [79], P. mollissima [80], P. edulis [81], and P. cristalina [78].

Then, in phase II, the culture is established. The prepared explants should be transferred to

a nutrient medium containing all micro- and macro-elements necessary for the in vitro plant’s

growth, as well as appropriate exogenous phytohormones determining the direction of devel-

opment and influencing the physiological processes of explants [19, 82]. The location on the

nutrient solution is also important. Explants placed too densely in culture containers may lead

to a decrease in the quality of the final product [15]. Our results showed that the media con-

taining 2 mg/L 2,4-D along with 0.2 mg/L BAP led to the maximum callogenesis rate and callus

fresh weight. In line with our results, Huh et al., [83] compared different concentrations and

types of PGRs on callus formation of P. edulis and reported that that the maximum callogen-

esis was observed in the medium containing 2 mg/L 2,4-D along with 1 mg/L BAP.

In the initial stage of growth, callus formation can be observed. In this phase, several factors

(e.g., type of callus, medium composition, PGRs, light, and temperature) are influenced callo-

genesis [14, 19, 70, 84, 85]. Although optimizing these factors is a prerequisite for success in

indirect shoot regeneration, optimization through conventional statistical methods is a labori-

ous and difficult task due to relying heavily on manual processes of optimization of single fac-

tors [39]. Therefore, there is a need to develop and employ novel and innovative

computational approaches such as ML for analyzing, predicting, and optimizing callogenesis

systems [18]. Using ML algorithms to predict and analyze tissue culture systems are promising

to optimize in vitro culture procedures [18, 22, 86]. The application of different ANNs is an

active area of research in tissue culture [18] which has been used in different systems of in
vitro culture such as callogenesis [20], shoot proliferation [46], androgenesis [44], somatic

embryogenesis [36], and direct shoot regeneration [87].

Table 4. Importance degree of each input on P. caerulea callogenesis responses through sensitivity analysis.

Outcome Item Subset IBA NAA 2.4-D BAP Explant

Callogenesis rate VSR Training 1.153163 1.303287 1.47196 1.377404 1.630848

Testing 0.144687 0.176535 0.190736 0.189839 0.204274

Rank 5 4 2 3 1

Callus fresh weight VSR Training 1.129271 1.423501 1.589794 1.464092 3.263684

Testing 0.595753 0.705888 0.747405 0.744469 1.535857

Rank 5 4 2 3 1

2,4-D: 2,4-dichlorophenoxyacetic acid; BAP: 6-benzylaminopurine; IBA: indole-3-butyric acid; NAA: 1-naphthaleneacetic acid; VSR: variable sensitivity ratio.

https://doi.org/10.1371/journal.pone.0292359.t004
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Therefore, in the current study, MLP as one of the most powerful and well-known ML

methods was employed to develop a predictive model for getting in-depth insight into the

effect of PGRs (i.e., 2,4-D, BAP, IBA, and NAA) and explant types (i.e., leaf, node, and inter-

node) on callogenesis of P. caerulea. Our results showed that MLP could be accurately model

and predict callogenesis responses (i.e., callogenesis rate and callus fresh weight). In line with

our results, previous studies have shown that MLP is a powerful ANN for modeling and pre-

dicting different in vitro culture systems such as in vitro seed germination [50], in vitro shoot

regeneration [46], shoot growth and development [21], in vitro sterilization [33], secondary

metabolite production [88], and in vitro rooting [40].

Based on the result of sensitivity analysis, the type of explant was the most important factor

for all the indirect regeneration parameters, followed by PGRs. It is well-documented that the

explant type plays a key role in callogenesis [1, 14, 15]. Indeed, the various in vitro responses of

each type of explant might be due to the differences in epigenetic regulation as well as endoge-

nous sugars and phytohormones [89]. Similar to our results, previous studies demonstrated

that explant type can be considered the most important factor in callogenesis [14, 15, 19]. Due

to the totipotent potential of the explant cells, the manipulation of the concentration and ratio

of PGRs leads to the differentiation of the explant cells that can ultimately result in callogenesis

[90]. Our results revealed that 2,4-D was the second most important factor in callogenesis. In

line with our results, previous studies showed that 2,4-D led to a higher frequency of callogen-

esis compared to other PGRs in different Passiflora sp. such as P. edulis [83], P. suberosa [76],

and P. mollissima [80].

Traditional approaches to optimizing tissue culture conditions are often time-consuming,

resource-intensive, and limited by the complexity of the process [18]. However, the hybrid

approach combines the strengths of MLP-based modeling and GA-driven optimization to

streamline the optimization process significantly [42, 58]. The hybrid MLP-GA approach pre-

sented in this study has proven to be a powerful tool in modeling, predicting, and optimizing

the callogenesis process. By incorporating MLP and GA, we have successfully tackled the com-

plexity and nonlinearity inherent in callogenesis. The MLP’s ability to capture intricate rela-

tionships between input parameters and callogenesis outcomes has significantly improved

predictive accuracy compared to conventional models [52]. The GA’s role in optimization has

further demonstrated its effectiveness in rapidly identifying optimal tissue culture conditions,

reducing the need for extensive trial-and-error experimentation [40]. Previous studies demon-

strated that the combination of these two techniques not only leads to more accurate predic-

tions but also provides a deeper understanding of the underlying mechanisms governing

callogenesis [44, 49, 52].

The results of the optimization process (MLP-GA) showed that the maximum callogenesis

rate would be achieved from the leaf explant cultured in the medium supplemented with 0.52

mg/L IBA plus 0.43 mg/L NAA plus 1.4 mg/L 2,4-D plus 0.2 mg/L BAP. The result highlighted

the importance of balances among PGRs, especially between cytokinins and auxins. In general,

a low concentration of cyrokinins and a high concentration of auxins results in callus forma-

tion [15, 90, 91]. In line with our results, Huh et al., [83] that the maximum callus formation in

P. edulis was obtained from leaf explants cultured in the medium containing a high concentra-

tion of auxin (2,4-D) with a low concentration of cytokinin.

Conclusion

Optimization of callogenesis is one of the key prerequisites for the development of in vitro sec-

ondary metabolite production and indirect organogenesis protocols in P. caerulea. Compre-

hensive knowledge of callogenesis and optimized protocol can be obtained by the application
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of a combination of ML and optimization algorithms. Our results showed that the callogenesis

of P. caerulea could be precisely predicted and optimized by using ML methods (i.e., MLP) in

combination with an evolutionary optimization algorithm (i.e., GA). The optimized PGRs and

the suitability of the developed model (MLP-GA) in callogenesis should be assessed by future

studies in P. caerulea. Moreover, the adaptation of a combination of MLP and GA can display

a forward-thinking aid to optimize and predict in vitro culture systems and consequentially

cope with several challenges faced currently in in vitro secondary metabolite production.
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