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Abstract

With the rapid development of biotechnology, gene sequencing methods are gradually

improved. The structure of gene sequences is also more complex. However, the traditional

sequence alignment method is difficult to deal with the complex gene sequence alignment

work. In order to improve the efficiency of gene sequence analysis, D2 series method of k-

mer statistics is selected to build the model of gene sequence alignment analysis. According

to the structure of the foreground sequence, the sequence to be aligned can be cut by differ-

ent lengths and divided into multiple subsequences. Finally, according to the selected sub-

sequences, the maximum dissimilarity in the alignment results is determined as the

statistical result. At the same time, the research also designed an application system for the

sequence alignment analysis of the model. The experimental results showed that the statis-

tical power of the sequence alignment analysis model was directly proportional to the

sequence coverage and cutting length, and inversely proportional to the K value and module

length. At the same time, the model was applied to the system designed in this paper. The

maximum storage capacity of the system was 71 GB, the maximum disk capacity was 135

GB, and the running time was less than 2.0s. Therefore, the k-mer statistic sequence align-

ment model and system proposed in this study have considerable application value in gene

alignment analysis.

1. Introduction

With the development of high-throughput sequencing technology, genomics research has

entered a new era. The analysis of genome sequences has become an important part of biologi-

cal and medical research [1]. The analysis of genome sequence can reveal the function of

genes, the characteristics of genome structure, and the association between genomes, which is

of great significance for the in-depth understanding of biological activities and the mechanism

of disease. In the process of genome sequence analysis, the method based on k-mer statistics

has attracted researchers’ attention. K-mer refers to continuous subsequences with a length of

K. Abundant sequence information can be obtained by counting the frequency of different k-

mers in genome sequences [2]. K-mer statistics can be used in many fields such as feature

extraction, sequence similarity comparison, genome classification and prediction of genome

sequences. However, due to the complexity of k-mer statistics and the relatively simple
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research depth, there are still few studies on the application of k-mer statistics in the alignment

analysis of long gene sequences [3]. In order to promote the application of k-mer statistics in

gene sequence alignment analysis, this study takes the D2 series of methods in k-mer statistics

as the research object, innovatively constructs a sequence statistical model, and determines a

unified measure for it, so as to realize the frequency identity and visualization of sequence

data. At the same time, in order to apply the constructed sequence statistical model to the

actual sequence analysis, the research also designed the sequence alignment software, and

applied the model to the software, aiming to achieve an efficient sequence alignment function.

To complete the above research content, the structure of the article is divided into five parts.

The first part is a brief introduction to the research content of the article. The second part is

the development status of the research direction. The third part is divided into two sections,

which respectively expounds the operation principle of gene sequence and k-mer statistics, as

well as the model and system constructed by using k-mer statistics. The fourth part is the

experimental analysis part, which sets up different experiments to analyze the performance of

the model and system. The fifth part is the summary of the research content. The purpose of

this paper is to promote the application prospect of k-mer statistics in gene sequence

alignment.

2. Related works

In biomedicine, statistics are widely used. Statistical methods play a crucial role in analyzing

and interpreting biological data, enabling researchers to gain insights and understand the

trends and significance of the data. Additionally, these methods facilitate data visualization,

allowing for a more intuitive and efficient understanding of the information by researchers. Y.

Fan et al used statistical methods to analyze the DNA integrity of cancer patients. The study set

up a control experiment, which divided cancer patients into two groups before and after sur-

gery. The statistical results showed that the DNA integrity of patients after operation was better

than that before operation, and there was no statistical difference between the two groups.

Therefore, the statistical analysis of DNA integrity can be used for the diagnosis of lung cancer

disease [4]. C. Randler et al. used statistical methods to investigate and analyze the phenome-

non of bird tail flick. After investigating and recording the behavior of birds in different envi-

ronments, they used statistical methods to analyze the causes of bird tail flicks. The results

showed that the tail flick phenomenon was mainly affected by the predation risk [5]. L. Craw-

ford et al. used the statistical method to statistically analyze the biological information in GBM

images. Through the analysis of quantitative statistical methods, the results showed that the

gene expression and volume characteristics of GBM could better reflect the status of GBM

patients. Therefore, the results of statistical analysis can be used for the diagnosis of GBM dis-

ease [6]. X. Yin et al. used statistical methods to analyze 100 loci of systemic lupus erythemato-

sus. Firstly, according to the pathological conditions of different systemic lupus erythematosus

cases, the human genetic region was determined, and then the 28 association signals were ana-

lyzed by Bayesian statistics. Finally, the genetic association signals of systemic lupus erythema-

tosus loci were analyzed according to the statistical probability results. A total of 10 loci with

posterior probability� 0.8 were selected [7].

In the field of biology, gene sequence carries most of the biological genetic information, so

the measurement and analysis of gene sequence has very important research value. In order to

evaluate the functionality of precise cloning, J. Ludwig et al. obtained the gene sequence infor-

mation in the TCR gene library. This study set up a high-throughput analysis tool, which can

link TCR gene sequence and cell phenotype at the cellular level and perform functional analy-

sis. It is believed that this method can realize the analysis of the mouse TCR gene [8]. L. Wu
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et al. studied the mechanism of self-incompatibility of Petunia by gene sequence analysis. The

comparative analysis of S-site sequences of three Petunia S haplotypes, it revealed that there

was a potential genetic exchange in the flanking region of the Petunia S gene, which promoted

the self-incompatibility of Petunia [9]. J. Sérgio et al. found the pathogen of the virus by

sequencing the complete genome of dogs infected with canine leptospirosis and computer

analysis and completely inferred the variation process of the virus. The analysis results showed

that the 56609 serotype strain was genetically related to the virus [10]. In order to study the

drug resistance of the HIV-1 gene, T. O. Digban et al. performed gene sequencing analysis on

patients with the HIV-1 disease and used the Mega 6 inference phylogenetic analysis tool. The

results of the study showed that in the gene comparison, no mutation of the drug-resistance

gene was found, so the traditional drug administration treatment scheme can still be used [11].

In order to determine the mediating relationship between DNA sequence and protein, M.

Menzel et al. used high-throughput sequencing to measure the DNA sequence and protein

sequence and determined the binding sites of the two sequences by k-mer statistics [12].

In conclusion, in the field of biology, statistical methods have achieved high application

value in the process of application. It can not only intuitively reflect the association and change

trend between biological data, but also provide researchers with a visual data scheme. Because

gene sequences contain a lot of genetic information, sequence alignment, and analysis can pro-

mote the development of biology and other related technologies. Although k-mer statistic

method has high statistical performance, few researchers apply it to gene sequence analysis.

The data inclusiveness of k-mer statistic method is very suitable for the alignment analysis of

long gene sequences. Therefore, this study uses the k-mer statistic method to build the gene

sequence alignment model, aiming to improve the application value of the k-mer statistic

method in gene sequence alignment analysis.

3 Gene sequence alignment model construction and application

based on k-mer statistics

With the rapid development of gene technology, the measured gene sequence has more perfect

information, so the length of the sequence has also increased significantly. Because most of the

traditional sequence alignment methods have made it difficult to deal with gene sequence

alignment for massive data, the k-mer statistic with high computational performance and high

inclusiveness is proposed to carry out applied research on gene sequence alignment.

3.1 Principle research based on k-mer statistics and gene sequence

3.1.1 Gene sequence data composition. Biological sequence refers to the linear sequence

of biological molecules such as genome, transcriptome, and proteome in an organism. In biol-

ogy, common biological sequences include deoxyribonucleic acid (DNA) and ribonucleotide

(RNA) gene sequences and macromolecular protein sequences. Among them, the DNA

sequence is composed of adenine (A), guanine (G), thymine (T), and cytosine (C), and the

arrangement mainly relies on a series of base pairs pairing with each other [13]. The main

arrangement of base pairs is A-T and G-C. The base composition of RNA sequence is different

from that of DNA sequence. There is no thymine in the RNA sequence, but uracil (U) instead.

The protein sequence is a linear arrangement consisting of 20 amino acids. There is a certain

biological relationship between gene sequence and protein sequence, and the specific biologi-

cal relationship is shown in Fig 1.

Fig 1 shows the transformation relationship between biological sequences. The biological

relationships shown in Fig 1 are called the central law in biology. As the carrier of genetic

information, DNA can replicate itself. Under the action of RNA polymerase, genetic
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information is transcribed into RNA through transcription factors. RNA can also realize the

self-replication of genetic information and transmit genetic information to proteins by editing

free RNAs, which is also a translation process. At the same time, in some viruses, RNA also has

the function of reverse transcription of genetic information to DNA. Proteins can regulate

DNA and RNA. Among them, both DNA sequence and RNA sequence are gene sequences in

organisms.

DNA is a molecule that stores genetic information in an organism. The molecule is a dou-

ble-stranded structure formed by two complementary single-stranded DNA through base pair-

ing and winding together in the form of a helix. Among them, each single-stranded DNA is

composed of a series of bases, which are interconnected by hydrogen bonds. The two single-

stranded DNAs of double-stranded DNA are arranged in opposite directions, that is, the 5

’end of one strand corresponds to the 3’ end of the other strand, while the 3 ’end of one strand

corresponds to the 5’ end of the other strand. The gene sequence of DNA is randomly arranged

by A, T, C, and G, such as in GCATTACG-CGTA form. RNA gene sequence refers to the

sequence of RNA molecules that encode proteins in organisms. RNA is a single-stranded

structure. The gene sequence of this molecule is the primary structure of RNA. It is mainly a

random combination of A, U, C, and G to form the corresponding sequence, such as

ACGCCG-GCUAGC.

In conclusion, DNA and RNA molecules contain a large amount of biological genetic infor-

mation, and the analysis of their biological sequences will help biotechnologists to further

explore the biological mechanism.

3.1.2 Basic operation process of D2 statistic based on k-mer. The k-mer statistic is a

method used to analyze DNA or RNA sequences. K-mer is a continuous subsequence of length

k, where k is a positive integer. The k-mer statistic represents the number or frequency of

occurrences of each different k-mer calculated in the sequence. The calculation of k-mer statis-

tics can not only obtain the distribution of sequences but also reveal the similarities or differ-

ences between sequences by comparing the k-mer statistics of different sequences [14]. In

Fig 1. Transformation relationships between biological sequences.

https://doi.org/10.1371/journal.pone.0306480.g001

PLOS ONE Gene sequence analysis model

PLOS ONE | https://doi.org/10.1371/journal.pone.0306480 September 12, 2024 4 / 19

https://doi.org/10.1371/journal.pone.0306480.g001
https://doi.org/10.1371/journal.pone.0306480


practical applications, the commonly used K value is usually 4, 5, or 6, which can provide

enough information to describe the sequence characteristics, and the calculation efficiency is

high. By analyzing k-mer statistics, researchers can better understand and interpret the struc-

ture and function of biological sequences.

The D2 series statistics method of k-mer statistics is used in this study. It is assumed that

there are gene sequences X and Y. Among them, the length of the sequence X is n characters,

and the length of the sequence Y is m characters. The data set A = {A,T,G,C} is composed of

sequences, and then the sequence k-mer length and 4k k-mer species are calculated according

to the k values. Assuming the existence of any k-mer species, it can be expressed as Eq (1).

w ¼ w1w2 . . .wk ð1Þ

In Eq (1), wk is composed of the k k-mer statistic. Then the sequence X and Y can be

expressed as Xw and Yw, that is, the k-mer vector can represent any gene sequence. Gene

sequences can be aligned according to the k constituent elements in the k-mer vector. If the D2

statistic is used for comparison, the expression is shown in Eq (2).

D2 ¼
X

w2A
XwYw ð2Þ

In Eq (2), the number of k-mer vectors is mainly considered in the calculation of D2 statis-

tics, while the total content of k-mer is ignored. Therefore, the traditional D2 statistical algo-

rithm will be affected by the sequence length and noise. Therefore, DS
2 and D*2 methods are

proposed. Both DS
2 and D*2 methods need to carry out central standardization treatment first,

and the treatment equation is shown in Eq (3).

�Xw ¼ Xw � ðn � kþ 1ÞpXw

�Yw ¼ Xw � ðm � kþ 1ÞpYw

ð3Þ

(

In Eq (3), pXw, pYw, and pYw are the w occurrence probabilities in sequences X and Y,

respectively. After normalizing the sequence, the calculation equation of the DS
2 statistic is

shown in Eq (4).

DS
2 ¼

X

w2A

�Xw
�Ywffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Xw
2
þ �Yw

2

q ð4Þ

The calculation equation of the D*2 statistic method is shown in Eq (5).

D∗
2 ¼

X

w2A

�Xw
�Ywffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn � kþ 1ÞpXwðm � kþ 1ÞpYw

p ð5Þ

In Eq (5), the D*2 statistic uses Poisson distribution to approximate the variance of k-mer,

but this method requires that the k-mer vector has a certain length. For comparative analysis

of gene sequences using the D2 series statistics method, it is necessary to calculate the distance

difference between sequences. The calculation equation of distance is shown in Eq (6).

Eu ¼
P

w2Aj
Xw

n
�
Yw

m
j
2

� �1=2
Ma ¼

X

w2A
j
Xw

n
�
Yw

m
jCh ¼ maxw2A

Xw

n
�
Yw

m

�
�
�
�

�
�
�
� ð6Þ

(

In Eq (6), Eu, Ma, and Ch are the Euclidean distance, Manhattan distance, and Chebyshev

distance between gene sequences, respectively. However, using distance to quantify the differ-

ence between sequences still needs a unified standard. The measure calculated by the three D2

methods is dissimilar. In biology, dissimilarity is usually used to measure the degree of
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difference between gene sequences, protein sequences, or organisms. The calculation methods

of the three dissimilarities are shown in Eq (7).

d2 ¼
1

2
1 �

P
w2AXwYwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

w2AXw
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
w2AYw

2

q

0

B
@

1

C
A

d2S ¼
1

2
1 �

P
w2A

�Xw
�Ywffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�X2
w þ

�Y 2
w

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

w2A
�Xw

2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Xw

2
þ �Yw

2

qr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

w2A
�Yw

2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Xw

2
þ �Yw

2

qr

0

B
B
B
@

1

C
C
C
A

d2

∗
¼

1

2
1 �

P
w2A

�Xw
�Ywffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn � kþ 1Þðm � kþ 1ÞpXwpYw

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

w2A
�Xw

2
=ððn � kþ 1ÞpXwÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

w2A
�Yw

2
=ððm � kþ 1ÞpYwÞ

q

0

B
B
B
@

1

C
C
C
A

ð7Þ

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

In Eq (7), d2,d2S, d2*and are the dissimilarity corresponding to D2, DS
2, and D*2 respec-

tively. At present, with the development of Biostatistics technology, DS
2 and D*2 methods are

more universal because they can normalize sequences. Therefore, in this study, DS
2 and D*2

methods were used to build the statistical analysis model of gene sequence.

3.2 Gene sequence statistical model construction and application based on

DS
2 and D*2 methods

3.2.1 Gene sequence statistical model construction based on DS
2 and D*2 methods.

Because DS
2 and D*2 methods can perform standard processing on sequences, the above two

methods can be used to build sequence statistical models Tsum and perform statistical analysis

on gene sequences measured by next-generation sequencing (NGS).

Fig 2 is the schematic diagram of Tsum statistical model operation. Assuming that the target

statistical sequences are X and Y this time, the model now cuts the two gene sequences that

need comparative analysis separately and then extracts equal-length subsequences from the

subsequences as statistical sequences. The sequence is cut from one end of the sequence, and

then the sequence is cut with Q length, then w length, and then repeat the cutting sequence of

Q and W length until the sequence is cut. The model only uses q-length subsequences as the

statistical column and compares all Q-length subsequences with the complete sequence, and

the statistical value is the maximum value of the comparison [15]. The expression for selecting

Fig 2. Tsum schematic diagram of statistical model operation.

https://doi.org/10.1371/journal.pone.0306480.g002
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the statistics of the process is shown in Eq (8).

Xs
i ¼ max1�i�ND2

sðWi;W 0
jÞ

Ys
j ¼ max1�j�ND2

sðWi;W 0
jÞ

ð8Þ

(

In Eq (8), XS
i and YS

j are the statistical values of the X sequence and Y sequence respectively.

After summing the subsequence statistical values of the X sequence and Y sequence respec-

tively, and then multiplying, the sequence statistical values under the statistical model can be

obtained. The Tsum statistical value of the sequence is shown in Eq (9).

Tsum
s ¼

XN

i¼1
Xs

i �
XN

j¼1
Ys

j ð9Þ

In Eq (9),
PN

i¼1
Xs

i and
PN

j¼1
Ys

j are the statistics of X subsequence and Y subsequence

respectively. Since most of the sequences measured by NGS are fragment sequences, it is nec-

essary to analyze the statistical power of the Tsum statistical model. In order to judge the effi-

cacy of the Tsum statistical model studied, two DNA sequences with the same length were

randomly generated by the computer. Among them, the base pair composition among

sequences is the same distribution, that is, the probability of composition of a, t, C, and G is

the same, which is 1 / 4. Then a generation model of the background sequence is constructed,

and the foreground model is used to complete the power analysis of theTsum statistical model

[16]. The background sequence model for efficacy analysis is shown in Fig 3.

Fig 3 is a schematic diagram of the foreground sequence model based on statistical power

analysis. The construction of the background sequence model is divided into two steps. First,

the sequence sites with the same composition structure in the two sequences are randomly

selected according to the Bernoulli distribution, and then the fragments with the composition

structure are replaced with each other. The two sequences after replacement are foreground

sequence models. After obtaining the model of the foreground sequence, the research can cal-

culate the power of the Tsum statistical model. Assuming that the two sequences have high sim-

ilarity when the significance level t reaches more than 95%, it shows statistical significance,

and the hypothesis is true. If the significance level is less than 95%, the statistical model is not

significant. While the model shows significance, it can also achieve high accuracy, that is, sta-

tistical power. The expression of statistical power is shown in Eq (10).

P ¼
NTsum�t

10000
ð10Þ

Fig 3. Schematic diagram of forest sequence model based on statistical power analysis.

https://doi.org/10.1371/journal.pone.0306480.g003
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In Eq (10), NTsum is the foreground sequence with significance in the detection sample.

10000 is the number of statistics. P is the proportion of significant sequence. The value of P is

[0,1]. The larger the value P, the stronger the statistical power of the model.

3.2.2 Sequence statistical model application system design based on D2 series method.

With the wide application of NGS technology in gene sequence detection, the integrity of

the whole genome sequence gradually increases, resulting in the gradual increase of the data

composition of the sequence. The traditional sequence alignment method represented by

the systematic evolution method has made it difficult to deal with the massive data of com-

plete NGS sequences. Therefore, the sequence non-alignment method has become a

research hotspot. The sequence alignment method pays more attention to the analysis of the

similarity between sequences, while the sequence non-alignment method will first convert

the sequence into sub-sequences, calculate the dissimilarity between sub-sequences, deter-

mine the distance between sequences according to the dissimilarity, and finally establish the

phylogenetic tree of sequences according to the calculated dissimilarity distance. Compared

with the two, the sequence non-alignment method has higher data accommodation and

objectivity [17]. The Tsum statistical model studied in this paper has excellent computational

efficiency and is suitable for the application of NGS technology in multi-sequence non-

alignment. In addition, the model has a parallel computing mode, which is conducive to the

conversion calculation of different metrics in the process of sequence non-alignment. How-

ever, there are still controversies about the confirmation of standard metrics in sequence

non-alignment methods, and there is also a lack of appropriate sequence analysis software

as a tool to apply the method in practice. Therefore, it is necessary to develop a new system

for comparative analysis of NGS sequences.

At present, D2 series methods are most widely used, so this study designs a SeqK system for

sequence non-alignment based on the d2 dissimilarity of D2 series methods. The d2 metric can

represent the k-mer count between two sequences and can sum all k-mers according to the

determined K value. At the same time, d2-derived metric d2S and d2* can also be used in hier-

archical gene sequences, and the non-aligned statistical results of sequences have high

predictability.

Fig 4 shows the calculation flow chart of the SeqK system. The SeqK system will first read a

sequence randomly from all the input matrices and calculate the k-mer frequency in the

sequence, then compare the two sequences according to the determined d2 metrics and calcu-

late the dissimilarity matrix. According to the output dissimilarity matrix, the non-alignment

of two sequences can be realized. Because the K-frequency in k-mer is relatively small, the

comparison results of this method in the system are more accurate. Therefore, the research

will also apply a method of controlling K-frequency in the SeqK system.

Fig 5 shows the operation process of the K-frequency control algorithm. Because the

data of gene sequence is composed of four letter structures, in order to facilitate the calcula-

tion of K-frequency, the sequence can first be converted into quaternary data, and then the

k-mer name can be converted into a numerical index of the same base. The data index can

control sequence addressing and data memory [18]. Then the k-mer frequency of the input

sequence is substituted into the 4K vector. If there are N-aligned sequences, the vectors of

the sequences are combined in a 4k×N matrix. Finally, according to the calculation method

in Fig 4, the dissimilarity between different sequences is calculated and stored in the

matrix. According to the obtained optimized dissimilarity matrix, the sequence can be

analyzed.
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4 Gene sequence analysis model performance and system

application analysis based on k-mer statistics

In order to promote the application of k-mer statistics in the analysis of gene sequence align-

ment, this paper constructs a Tsum statistical model and designs a SeqK system, aiming to

Fig 5. Calculation process diagram of K-frequency control algorithm.

https://doi.org/10.1371/journal.pone.0306480.g005

Fig 4. Calculation flowchart of SeqK system.

https://doi.org/10.1371/journal.pone.0306480.g004
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apply it to the system to realize the alignment of gene sequences. Therefore, in order to verify

the performance of the model and system, different experiments were set up to verify it.

4.1 Experimental environment

In order to study the performance of k-mer statistics in gene sequence analysis, the SeqK sys-

tem was designed to count k-mer vectors in sequences. The information on the hardware

experiment environment implemented by the SeqK system is shown in Table 1.

Table 1 shows the experimental hardware environment table. At this time, the experiment

uses the Intel server and Intel (R) Xeon Phi (TM) CPU 7210 @ server to build the SeqK system

for experiments. The software information of the system is shown in Table 2.

Table 2 shows the experimental software environment. The system used C++ language and

the optimization compiler to display the sequence alignment of the system. According to the

experimental environment in Table 1 and Table 2, the SeqK system can be applied to the com-

puter platform, and the analysis performance of k-mer statistics in gene sequences can be

explored by setting experiments.

4.2 Experimental setup

The original gene sequencing data from the National Center for Biotechnology Information

(NCBI) were used in the experiment, and the data were measured by NGS technology. After

breaking up the above gene sequences, the sequences were re-spliced by gene recombination

Table 1. Experimental hardware environment.

Hardware Name Information Type Model Number

Server Manufacturer Intel

Model Number SYS-5038K-I-ES1

Processor Model Number Intel(R) Xeon Phi(TM) CPU 7210 @

Number of CPUs 1

Number of Cores 64

Logical CPU 256

Memory Manufacturer Micron

Combination 16GB×6

Size 256GB

Type DDR4×6

Disk Model HGST HUS726040AL

Size 4TB

https://doi.org/10.1371/journal.pone.0306480.t001

Table 2. Experimental software sheet.

Software name Software version Version parameters

OS Release Ubuntu 20.04.1 LTS

Kernel version 5.4.0-66-generic

Programming language Standard C++

Compiler Version GCC-9.3.0

Optimization options Fully optimized

Architecture options -march = X86-64

Other options -pthread-MCX16

Cuckoo hash table Library name libcuckoo

Version 3.1.0

https://doi.org/10.1371/journal.pone.0306480.t002

PLOS ONE Gene sequence analysis model

PLOS ONE | https://doi.org/10.1371/journal.pone.0306480 September 12, 2024 10 / 19

https://doi.org/10.1371/journal.pone.0306480.t001
https://doi.org/10.1371/journal.pone.0306480.t002
https://doi.org/10.1371/journal.pone.0306480


technology to increase the length of the sequences. The recombined dataset information is

shown in Table 3.

Table 3 shows the list of recombinant genes. The gene types studied are mainly divided into

four categories: human, monocot, tree shrew, and dicot. All four types of gene sequences were

DNA sequences. The above sequences were divided into Q length and W length, and the sum

of Q and W length and T represent the degree of fragmentation of the sequence. The smaller

the T, the higher the degree of fragmentation of the sequence. In addition to sequence length T
affecting the efficacy of the Tsum model, the coverage r of the model also had a certain impact.

Coverage r represents the proportion of cut subsequences in all statistical sequences. There-

fore, this study analyzed the Tsum statistical power under the influence of the module length L
and frequency k of the foreground sequence.

4.3 Tsum model performance analysis based on k-mer statistics

The performance analysis of the statistical power of the Tsum model was expressed in the form

of a statistical power P curve. The sequence gradient under the curve was selected in the span

range of 500 to 2000. Each value was simulated 5,000 times and finally averaged. Firstly, the

statistical power analysis of coverage under different sequence sets was carried out. The frag-

ment length of the sequence was set to 2000, the frequency k to 6, and the module length L to

8. The effect of coverage on statistical power was analyzed according to the change in the p-

value curve. Then the influence of k-mer frequency on the statistical power of the model was

analyzed. The module length was set to 8, the coverage was 75%, and the coverage was set to

2000. The frequency ranged from 5, 6, 7 and 8. The effect on statistical power was determined

according to the change in the p-value curve. Then the effect of sequence cut length on statisti-

cal power was analyzed. The frequency was set to 6, the module length to 8, the coverage rate

to 75%, and the values to 500, 1000, 1500, and 2000. The effect on statistical power was deter-

mined according to the change in the p-value curve. Finally, the influence of module length on

statistical power was analyzed. The frequency was set to 6, the coverage was 75%, and the value

range was 5, 6, 7, and 8. The effect on statistical power was determined according to the change

in the p-value curve. According to the above four groups of experiments, the statistical power

of the Tsum model under different parameters was determined, and its performance was

analyzed.

Fig 6 shows the statistical power of models with different coverage in different sequence

sets. Among them, Fig 6(A)–6(D) respectively use human, monocot, tree shrew and dicot

sequence datasets. It can be seen that in the four datasets, the coverage rate was consistent with

the statistical power of the model, and the statistical power of the model increased gradually

with the increase of r. However, the length of the processing sequence had little effect on the

statistical power of the model. When the coverage rate was high, the model processed sequence

data more comprehensively, thereby improving the statistical power of the model. In four

sequence datasets, when r was 25%, the statistical power of the model ranged from 0.17 to 0.30,

which was relatively low. When r was 50%, the statistical power of the model ranged from 0.75

Table 3. Recombinant gene table.

Data Type Homo sapiens Triticum urartu Tupaia chinensis Capsicum annuum

Species Type Humans Monocotyledons Tree shrews Bilobed plants

Code GRCh38.p12 Tu2.0 TupChi_1.0 Zunla 1

Sample number GCF_000001405.38 GCA_003073215.1 GCF_000334495.1 GCF_000710875.1

Sequence type DNA sequence DNA sequence DNA sequence DNA sequence

https://doi.org/10.1371/journal.pone.0306480.t003
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to 0.83. However, when r reached 75%, the statistical power of the model reached a range of

0.87–0.95. Therefore, the higher the coverage of the model, the higher the statistical power of

the model.

Fig 7 shows the statistical power of models with different frequencies in different sequence

sets. Among them, Fig 7(A)–7(D) respectively use human, monocot, tree shrew and dicot

sequence datasets. It can be seen that in different sequence datasets, the changing trend of the

statistical power of the model under different frequencies had certain differences. However,

with the increase in coverage, the model with a smaller frequency can eventually achieve

higher statistical power. Moreover, the overall statistical power of the model at different fre-

quencies also increased. When k was 5 and the coverage was 1.0, the statistical power of the

model reached 0.89, 0.93, 0.86, and 0.84 in the four sequence datasets of human, monocot, tree

shrew, and dicot, respectively. When k was 6 and the coverage rate r was 1.0, the statistical

power of the Tsum model reached 0.82, 0.85, 0.78, and 0.82 in the four sequence datasets of

human, single leaf plant, tree shrew, and double leaf plant, respectively. When k was 7 and the

coverage rate r was 1.0, the statistical power of the Tsum model reached 0.82, 0.79, 0.41, and

0.68 in the four sequence datasets of human, monocotyledonous, tree shrew, and

Fig 6. Statistical efficiency of Tsum models with different coverage in different sets of sequences.

https://doi.org/10.1371/journal.pone.0306480.g006
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dicotyledonous plants, respectively. When k was 8 and the coverage rate r was 1.0, the statisti-

cal power of the Tsum model reached 0.59, 0.78, 0.38, and 0.57 in the four sequence datasets of

humans, monocotyledonous plants, tree shrews, and dicotyledonous plants, respectively.

Therefore, the model under low frequency can achieve better statistical power.

Fig 8 shows the statistical power of models with different cutting lengths in different

sequence sets. Among them, Fig 8(A)–8(D) respectively use human, monocot, tree shrew and

dicot sequence datasets. It can be seen that in the four types of sequence data sets, the variation

trend of the statistical efficiency of the model was basically the same. With the increase in

sequence cutting length, the statistical power of the models showed an upward trend. Because

the shorter the length of the cut subsequence, the higher the degree of fragmentation of the

sequence. At this time, the model was more prone to appear similar modules in the alignment

between sequences, which led to the decline of the statistical power of the model. When T was

500, the model Tsum achieved statistical efficacy of 0.72, 0.68, 0.52, and 0.52 in four sequence

datasets of humans, monocotyledonous plants, tree shrews, and dicotyledonous plants, respec-

tively. When T was 1000, the model Tsum achieved statistical efficacy of 0.76, 0.67, 0.53, and

0.54 in four sequence datasets of humans, monocotyledonous plants, tree shrews, and dicotyle-

donous plants, respectively. When T was 1500, the model Tsum achieved statistical power of

0.84, 0.82, 0.75, and 0.74 in four sequence datasets of humans, monocotyledonous plants, tree

shrews, and dicotyledonous plants, respectively. When T was 2000, the model can achieve the

statistical power of 0.87, 0.93, 0.80, and 0.79 in four sequence datasets of human, monocot,

Fig 7. Statistical efficiency of Tsum models with different frequency in different sets of sequences.

https://doi.org/10.1371/journal.pone.0306480.g007
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tree shrew, and dicot, respectively. Therefore, with the increase of the sequence cutting length,

the statistical power of the model gradually increased.

Fig 9 shows the statistical power of models with different module lengths in different

sequence sets. Among them, Fig 9(A)–9(D) respectively use human, monocot, tree shrew and

dicot sequence datasets. It can be seen that in different types of gene sequences, the model was

negatively correlated with module length. As the module length decreased, the statistical

power of the model gradually increased. When L was 5, the power of the model in human,

monocot, tree shrew, and dicot sequence datasets can reach 0.80, 0.82, 0.81, and 0.81, respec-

tively. When L was 6, the Tsum model achieved efficacy of 0.78, 0.81, 0.73, and 0.76 in four

sequence datasets of humans, monocotyledonous plants, tree shrews, and dicotyledonous

plants, respectively. When L was 7, the Tsum model achieved efficacy of 0.71, 0.72, 0.71, and

0.73 in four sequence datasets of humans, monocotyledonous plants, tree shrews, and dicotyle-

donous plants, respectively. When L was 8, the Tsum model achieved efficacy of 0.70, 0.70, 0.59,

and 0.62 in four sequence datasets of humans, monocotyledonous plants, tree shrews, and

dicotyledonous plants, respectively. Therefore, as the module length decreases, the statistical

power of the model will gradually rise.

4.4 Sequence non-aligned SeqK system analysis based on k-mer statistics

In order to make the k-mer statistic method be applied to sequence alignment analysis, this

study also designed the SeqK system, which quantifies the character composition structure in

Fig 8. Statistical efficiency of Tsum models with different cut lengths in different sets of sequences.

https://doi.org/10.1371/journal.pone.0306480.g008
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the gene sequence through the D2 series method in the k-mer statistic, so as to carry out the

alignment analysis between series according to the dissimilarity matrix. In order to verify the

application performance of the system in sequence alignment analysis, three classical sequence

comparison systems, danman, basic local alignment search tool (BLAST), and Clustal, were

used for analysis in this study. Among them, danman supports multiple sequence alignment,

and the operation is relatively simple. Clustal is a multi-sequence alignment tool for progres-

sive alignment, which is widely used. Blast is the most recognized tool in short sequence con-

trast, and the system has the advantage of high efficiency. The computing environments of the

four systems are shown in Table 1 and Table 2. In the comparison of system performance, data

sets with sequence lengths of 500, 1000, 1500, and 2000 were set up, and the four sets of data

were input into the system respectively to analyze the operation time and hardware operation

state of different computing systems.

Fig 10 shows the operation memory under different sequence alignment systems. Among

them, SeqK, danman, blast, and Clustal are used in Fig 10(A)–10(D), respectively. It can be

seen that as the length of the processing sequence increased, the running memory of different

systems increased by different extents. However, the SeqK system proposed in the study had

higher data inclusiveness, so among the four systems, the SeqK system had the smallest

amount of running memory, followed by the danman multiple sequence alignment system

with good adaptability, then the Clustal system, and finally the blast system. Because the blast

system was more suitable for short sequence analysis, when the sequence length was long, the

Fig 9. Statistical efficiency of Tsum models with different module lengths in different sets of sequences.

https://doi.org/10.1371/journal.pone.0306480.g009
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system had a high load, resulting in high running memory. When the length of the sequence

was 500, 1000, 1500, and 2000, the SeqK system can reach 62, 68, 69 and 71 GB of running

memory, respectively. When the sequence length was 500, 1000, 1500, and 2000, the DAN-

MAN multi-sequence alignment system achieved 74, 82, 88, and 92GB of running memory,

respectively. The BLAST system achieved running memory of 127, 140, 160, and 180GB,

respectively. The Cluster system achieved 91, 123, 142, and 160GB of running memory, respec-

tively. Therefore, the SeqK system studied and designed had better operation performance.

Fig 11 shows the disk occupancy under different sequence alignment systems. It can be

seen that as the sequence length increased, the disk storage of different systems was also gradu-

ally increasing. Among them, the SeqK system had a lower proportion of disks, which was

because the SeqK system converted sequences into data of the same frequency according to a

unified measure in the process of sequence alignment, so as to reduce the operation process of

data, making the whole sequence alignment process more concise, and thus have a lower pro-

portion of disks. The higher proportion of disks in the Clustal system was because the system

was a progressive comparison method, and the calculation process was more complex, so the

proportion of disks was higher. When the alignment sequence length was 2000, the disk stor-

age of the SeqK system, DANMAN multi-sequence alignment system, Cluster system, and

BLAST system was 135GB, 144GB, 187GB, and 152GB, respectively. Therefore, the SeqK sys-

tem studied this time had a lower disk footprint.

Fig 10. Operational memory under different sequence alignment systems.

https://doi.org/10.1371/journal.pone.0306480.g010
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Fig 12 shows the operation time of different sequence alignment systems. It can be seen

that the SeqK system had a shorter operation time among the four-length sequence align-

ments, and the blast system had the longest operation time. Because the SeqK system can con-

vert sequence data into visual data with the same metric, it improved the operation efficiency.

The blast system was limited to the alignment of short sequences, so in the process of align-

ment, it increased the time of cutting long sequences into short sequences, resulting in the

overall operation time being too long. As a progressive comparison system, the Clustal system

had a more complex calculation process, so the calculation time of Clustal system was also lon-

ger. Because the SeqK system controlled the measurement of operation, its operation efficiency

was slightly higher than that of the DANMAN system. When the running sequence length was

2000, the operation time of the SeqK system, DANMAN multi-sequence alignment system,

Cluster system, and BLAST system was 1.6s, 2.1s, 2.8s, and 2.6s, respectively. Therefore, the

SeqK system had higher sequence alignment efficiency.

Fig 11. Disk storage under different sequence alignment systems.

https://doi.org/10.1371/journal.pone.0306480.g011

Fig 12. Operation time of different sequence alignment systems.

https://doi.org/10.1371/journal.pone.0306480.g012
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5 Conclusion

Because gene sequences contain a large amount of biological genetic information, it is of great

significance to compare and analyze gene sequences measured by high-throughput sequencing

methods. However, the method of gene sequence alignment has not kept pace with the devel-

opment of sequencing technology, so the analysis of longer gene sequences has become a

research difficulty. In order to improve the ability of alignment analysis of long gene

sequences, this study proposed to build a statistical alignment model using the k-mer statistic

method with high efficiency and low storage requirements. The D2 series method of k-mer sta-

tistic method is used to build the model. Firstly, the gene sequence is segmented, and then the

dissimilarity of the segmented sequence is calculated, and the comparison of statistics is com-

pleted according to the dissimilarity. At the same time, the SeqK system is also designed to

implement the comparison model. The results showed that the model achieved the statistical

power of 0.87–0.95 when the sequence coverage was 75%. When k was 5, the highest statistical

power reached 0.93 in the single-leaf plant sequence dataset. When the cutting length was

2000, the model still achieved a statistical power of 0.93 in the single-leaf plant sequence data-

set. The designed system achieved 71 GB of running memory, 135 GB of disk memory, and

about 1.8s of running time when the sequence length was 2000. Therefore, the comparison

model and system constructed by k-mer statistics have relatively excellent application perfor-

mance. However, the statistical power of the proposed model in different gene sequence data

has certain differences, indicating that the universality of the model still has room to improve,

and the model can be improved for the expansion of the scope of application.
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