Computer science

Refining a deep learning-based formant tracker using linear prediction methods

In this study, formant tracking is investigated by refining the formants tracked by an existing data-driven tracker, DeepFormants, using the formants estimated in a model-driven manner by linear prediction (LP)-based methods. As LP-based formant estimation methods, conventional covariance analysis (LP-COV) and the recently proposed quasi-closed phase forward–backward (QCP-FB) analysis are used. ...
1 year ago

Hierarchical fuzzy deep learning system for various classes of images

There has been an increasing interest in the development of deep-learning models for the large data processing such as images, audio, or video. Image processing has made breakthroughs in addressing important problems such as genome-wide biological networks, map interactions of genes and proteins, network, etc. With the increase in sophistication of the system, and other areas such as internet of t...
1 year ago

Laser-Visible Face Image Translation and Recognition Based on CycleGAN and Spectral Normalization

The range-gated laser imaging instrument can capture face images in a dark environment, which provides a new idea for long-distance face recognition at night. However, the laser image has low contrast, low SNR and no color information, which affects observation and recognition. Therefore, it becomes important to convert laser images into visible images and then identify them. For image translation...
1 year ago

Flood-Related Multimedia Benchmark Evaluation: Challenges, Results and a Novel GNN Approach

This paper discusses the importance of detecting breaking events in real time to help emergency response workers, and how social media can be used to process large amounts of data quickly. Most event detection techniques have focused on either images or text, but combining the two can improve performance. The authors present lessons learned from the Flood-related multimedia task in MediaEval2020, ...
1 year ago

Deep Learning Based Vehicle Detection on Real and Synthetic Aerial Images: Training Data Composition and Statistical Influence Analysis

The performance of deep learning based algorithms is significantly influenced by the quantity and quality of the available training and test datasets. Since data acquisition is complex and expensive, especially in the field of airborne sensor data evaluation, the use of virtual simulation environments for generating synthetic data are increasingly sought. In this article, the complete process chai...
1 year ago

Showing Page 4 to 4