Physics Maths Engineering
Hui Fang,
Kunhao Yuan,
Gerald Schaefer,
Yu-Kun Lai,
Yifan Wang,
Xiyao Liu
Peer Reviewed
Weakly supervised semantic segmentation (WSSS) has gained significant popularity as it relies only on weak labels such as image level annotations rather than the pixel level annotations required by supervised semantic segmentation (SSS) methods. Despite drastically reduced annotation costs, typical feature representations learned from WSSS are only representative of some salient parts of objects and less reliable compared to SSS due to the weak guidance during training. In this paper, we propose a novel Multi-Strategy Contrastive Learning (MuSCLe) framework to obtain enhanced feature representations and improve WSSS performance by exploiting similarity and dissimilarity of contrastive sample pairs at image, region, pixel and object boundary levels. Extensive experiments demonstrate the effectiveness of our method and show that MuSCLe outperforms current state-of-the-art methods on the widely used PASCAL VOC 2012 dataset.
Show by month | Manuscript | Video Summary |
---|---|---|
2024 November | 32 | 32 |
2024 October | 35 | 35 |
2024 September | 56 | 56 |
2024 August | 37 | 37 |
2024 July | 33 | 33 |
2024 June | 27 | 27 |
2024 May | 35 | 35 |
2024 April | 22 | 22 |
2024 March | 6 | 6 |
Total | 283 | 283 |
Show by month | Manuscript | Video Summary |
---|---|---|
2024 November | 32 | 32 |
2024 October | 35 | 35 |
2024 September | 56 | 56 |
2024 August | 37 | 37 |
2024 July | 33 | 33 |
2024 June | 27 | 27 |
2024 May | 35 | 35 |
2024 April | 22 | 22 |
2024 March | 6 | 6 |
Total | 283 | 283 |